已知橢圓
兩焦點(diǎn)坐標(biāo)分別為
,
,一個(gè)頂點(diǎn)為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為
的直線
,使直線
與橢圓
交于不同的兩點(diǎn)
,滿足
. 若存在,求出
的取值范圍;若不存在,說明理由.
(Ⅰ)
;(Ⅱ)存在,![]()
解析試題分析:(Ⅰ)由題意可得b和c,再根據(jù)
,可求得
。即可求出橢圓方程。(Ⅱ)由點(diǎn)斜式設(shè)出直線方程,然后聯(lián)立,消掉y(或x)得到關(guān)于x的一元二次方程。因?yàn)橛袃蓚(gè)交點(diǎn)所以判別式大于0,再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系。已知
,如用兩點(diǎn)間距離公式,計(jì)算量非常大,故可多分析問題得到設(shè)線段
中點(diǎn)為P,則有
,可用直線位置關(guān)系列式計(jì)算,也可轉(zhuǎn)化為向量用數(shù)量積計(jì)算,后邊的方法計(jì)算較為簡單。
試題解析:(Ⅰ)設(shè)橢圓方程為
.則依題意
,
,所以![]()
于是橢圓
的方程為
4分
(Ⅱ)存在這樣的直線
. 依題意,直線
的斜率存在
設(shè)直線
的方程為
,則
由
得![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/d/rqnxd.png" style="vertical-align:middle;" />得
①
設(shè)
,線段
中點(diǎn)為
,則![]()
于是![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/6/1leij3.png" style="vertical-align:middle;" />,所以
.
若
,則直線
過原點(diǎn),
,不合題意.
若
,由
得,
,整理得
②
由①②知,
, 所以![]()
又
,所以
. 14分
考點(diǎn):(1)橢圓的定義及簡單幾何性質(zhì)(2)直線與圓錐曲線的位置關(guān)系的問題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的方程為
,斜率為1的直線不經(jīng)過原點(diǎn)
,而且與橢圓相交于
兩點(diǎn),
為線段
的中點(diǎn).
(1)問:直線
與
能否垂直?若能,求
之間滿足的關(guān)系式;若不能,說明理由;
(2)已知
為
的中點(diǎn),且
點(diǎn)在橢圓上.若
,求
之間滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn)
,點(diǎn)
在直線
:
上運(yùn)動(dòng),過點(diǎn)
與
垂直的直線和線段
的垂直平分線相交于點(diǎn)
.
(1)求動(dòng)點(diǎn)
的軌跡
的方程;
(2)過(1)中的軌跡
上的定點(diǎn)![]()
作兩條直線分別與軌跡
相交于
,
兩點(diǎn).試探究:當(dāng)直線
,
的斜率存在且傾斜角互補(bǔ)時(shí),直線
的斜率是否為定值?若是,求出這個(gè)定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
,直線
交橢圓
于
兩點(diǎn).
(Ⅰ)求橢圓
的焦點(diǎn)坐標(biāo)及長軸長;
(Ⅱ)求以線段
為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的兩個(gè)焦點(diǎn)是(0,-
)和(0,
),并且經(jīng)過點(diǎn)
,拋物線E的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F恰好是橢圓C的右頂點(diǎn).
(Ⅰ)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知橢圓
的兩個(gè)焦點(diǎn)分別為
、
,且
到直線
的距離等于橢圓的短軸長.![]()
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 若圓
的圓心為
(
),且經(jīng)過
、
,
是橢圓
上的動(dòng)點(diǎn)且在圓
外,過
作圓
的切線,切點(diǎn)為
,當(dāng)
的最大值為
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,曲線
、
相交于
、
兩點(diǎn).(
)
(Ⅰ)求
、
兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線
與直線
(
為參數(shù))分別相交于
兩點(diǎn),求線段
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左、右焦點(diǎn)分別為
,且
,長軸的一個(gè)端點(diǎn)與短軸兩個(gè)端點(diǎn)組成等邊三角形的三個(gè)頂點(diǎn).
(1)求橢圓方程;
(2)設(shè)橢圓與直線
相交于不同的兩點(diǎn)M、N,又點(diǎn)
,當(dāng)
時(shí),求實(shí)數(shù)m的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
,且經(jīng)過點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線
不過點(diǎn)M,求證:直線MA、MB與x軸圍成一個(gè)等腰三角形
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com