中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

某停車場臨時停車按時段收費,收費標準為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時按1小時計算).現有甲、乙兩人在該場地停車,兩人停車都不超過4小時.
(Ⅰ)若甲停車1小時以上且不超過2小時的概率為,停車付費多于14元的概率為,求甲停車付費6元的概率;
(Ⅱ)若甲、乙兩人每人停車的時長在每個時段的可能性相同,求甲乙二人停車付費之和為28元的概率.

(1);(2) .

解析試題分析:(1根據題意,可知,根據停車的時間可以把事件分為4個,分別是“一次停車不超過1小時”的時間為A,“一次停車不超過2小時”的時間為B,“一次停車2到3小時”的時間為C,“一次停車3到4小時”的時間為D,可以判斷出P(B)=, P(C+D)=, 又事件A,C,D互斥,所以可得出事件A的概率P(A)=.
(2)列出甲,乙停車時間的所有基本事件,共計16個,可以得出“甲乙二人停車付費之和為28元”的事件有3個,所以可得出“甲乙二人停車付費之和為28元”的事件的概率.
試題解析:(Ⅰ)設“一次停車不超過1小時”的時間為A,“一次停車不超過2小時”的時間為B,“一次停車2到3小時”的時間為C,“一次停車3到4小時”的時間為D,            3分
由已知P(B)=, P(C+D)=,又事件A,C,D互斥,所以P(A)=.
所以甲停車付費6元的概率是.                                         6分
(Ⅱ)甲,乙停車時間的基本事件有16個:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),                          9分
“甲乙二人停車付費之和為28元”的事件有3個:(1,3),(2,2),(3,1)所以概率是.
考點:古典概型.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

從甲、乙、丙、丁四個人中任選兩名志愿者,則甲被選中的概率是        

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

袋中裝有編號為的球個,編號為的球個,這些球的大小完全一樣。
(1)從中任意取出四個,求剩下的四個球都是號球的概率;
(2)從中任意取出三個,記為這三個球的編號之和,求隨機變量的分布列及其數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某企業主要生產甲、乙兩種品牌的空調,由于受到空調在保修期內維修費等因素的影響,企業生產每臺空調的利潤與該空調首次出現故障的時間有關,甲、乙兩種品牌空調的保修期均為3年,現從該廠已售出的兩種品牌空調中各隨機抽取50臺,統計數據如下:

品牌


首次出現故障時間
x年







空調數量(臺)
1
2
4
43
2
3
45
每臺利潤(千元)
1
2
2.5
2.7
1.5
2.6
2.8
 
將頻率視為概率,解答下列問題:
(1)從該廠生產的甲品牌空調中隨機抽取一臺,求首次出現故障發生在保修期內的概率;
(2)若該廠生產的空調均能售出,記生產一臺甲品牌空調的利潤為X1,生產一臺乙品牌空調的利潤為X2,分別求X1,X2的分布列;
(3)該廠預計今后這兩種品牌空調銷量相當,但由于資金限制,只能生產其中一種品牌空調,若從經濟效益的角度考慮,你認為應該生產哪種品牌的空調?說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場為吸引顧客消費推出一項優惠活動.活動規則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在A區域返券60元;停在B區域返券30元;停在C區域不返券.例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.

(1)若某位顧客消費128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費280元,并按規則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

名男生和名女生中任選人參加演講比賽,
①求所選人都是男生的概率;
②求所選人恰有名女生的概率;
③求所選人中至少有名女生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響.已知某學生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用ξ表示該學生選修的課程門數和沒有選修的課程門數的乘積.
(1)記“函數f(x)=x2+ξx為R上的偶函數”為事件A,求事件A的概率;
(2)求ξ的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

一批10件產品,其中3件次品,不放回抽取3次,已知第一次抽到是次品,則第三次抽到次品的概率 _________。           

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

從12個同類產品(其中10個是正品,2個是次品)中任意抽取3個,(1)3個都是
正品;(2)至少有1個是次品;(3)3個都是次品;(4)至少有1個是正品,上列四個事件中為
必然事件的是________ (寫出所有滿足要求的事件的編號)

查看答案和解析>>

同步練習冊答案