設(shè)A(x1,y1),B(x2,y2)是橢圓C:
=1(a>b>0)上兩點,已知m=
,n=
,若m·n=0且橢圓的離心率e=
,短軸長為2,O為坐標(biāo)原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,焦點y在軸上,焦距為
,且過點M
。
(1)求橢圓C的方程;
(2)若過點
的直線l交橢圓C于A、B兩點,且N恰好為AB中點,能否在橢圓C上找到點D,使△ABD的面積最大?若能,求出點D的坐標(biāo);若不能,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓中心在坐標(biāo)原點,焦點在x軸上,離心率為
,它的一個頂點為拋物線x2=4y的焦點.
(1)求橢圓方程;
(2)若直線y=x-1與拋物線相切于點A,求以A為圓心且與拋物線的準線相切的圓的方程;
(3)若斜率為1的直線交橢圓于M、N兩點,求△OMN面積的最大值(O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,且經(jīng)過點
. 過它的兩個焦點
,
分別作直線
與
,
交橢圓于A、B兩點,
交橢圓于C、D兩點,且
.![]()
(1)求橢圓的標(biāo)準方程;
(2)求四邊形
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0),M點的坐標(biāo)為(12,8),N點在拋物線C上,且滿足
=
,O為坐標(biāo)原點.![]()
(1)求拋物線C的方程;
(2)以M點為起點的任意兩條射線l1,l2的斜率乘積為1,并且l1與拋物線C交于A,B兩點,l2與拋物線C交于D,E兩點,線段AB,DE的中點分別為G,H兩點.求證:直線GH過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△
的兩個頂點
的坐標(biāo)分別是
,
,且
所在直線的斜率之積等于
.
(1)求頂點
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(2)當(dāng)
時,過點
的直線
交曲線
于
兩點,設(shè)點
關(guān)于
軸的對稱點為
(
不重合), 試問:直線
與
軸的交點是否是定點?若是,求出定點,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
是橢圓
的左、右頂點,橢圓
的離心率為
,右準線
的方程為
.![]()
(1)求橢圓方程;
(2)設(shè)
是橢圓
上異于
的一點,直線
交
于點
,以
為直徑的圓記為
. ①若
恰好是橢圓
的上頂點,求
截直線
所得的弦長;
②設(shè)
與直線
交于點
,試證明:直線
與
軸的交點
為定點,并求該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
的左、右焦點分別為
、
,橢圓上的點
滿足
,且
的面積
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存在直線
,使
與橢圓
交于不同的兩點
、
,且線段
恰被直線
平分?若存在,求出
的斜率取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)F1,F2分別是橢圓E:x2+
=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com