已知以點C
(t∈R,t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標.
科目:高中數學 來源: 題型:解答題
已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.![]()
(1)求實數a,b間滿足的等量關系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知圓x2+y2-12x+32=0的圓心為Q,過點P(0,2)且斜率為k的直線l與圓Q相交于不同的兩點A,B.
(1)求圓Q的面積;
(2)求k的取值范圍;
(3)是否存在常數k,使得向量
+
與
共線?如果存在,求k的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線C上的動點P(
)滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為![]()
(1)求曲線C的方程。
(2)過點M(1,2)的直線
與曲線C交于兩點M、N,若|MN|=4,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓
的方程為
,直線
的方程為
,點
在直線
上,過
點作圓
的切線
,切點為
.
(1)若
,試求點
的坐標;
(2)若
點的坐標為
,過
作直線與圓
交于
兩點,當
時,求直線
的方程;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系.已知直線l的參數方程為
為參數),圓
的極坐標方程為
.
(1)若圓
關于直線
對稱,求
的值;
(2)若圓
與直線
相切,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點
到定點
與到定點
的距離之比為
.
(1)求動點
的軌跡C的方程,并指明曲線C的軌跡;
(2)設直線
,若曲線C上恰有三個點到直線
的距離為1,求實數
的值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com