中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(本小題滿分13分)已知函數(x>0)在x = 1處
取得極值–3–c,其中a,b,c為常數。
(1)試確定a,b的值;(6分)
(2)討論函數f(x)的單調區間;(4分)
(3)若對任意x>0,不等式恒成立,求c的取值范圍。(3分)
解:(I)由題意知,因此,從而
又對求導得
由題意,因此,解得
(II)由(I)知),令,解得
時,,此時為減函數;
時,,此時為增函數.
因此的單調遞減區間為,而的單調遞增區間為
(III)由(II)知,處取得極小值,此極小值也是最小值,
要使)恒成立,只需
,從而,解得
所以的取值范圍為
解:(I)由題意知,因此,從而
又對求導得
由題意,因此,解得
(II)由(I)知),令,解得
時,,此時為減函數;
時,,此時為增函數.
因此的單調遞減區間為,而的單調遞增區間為
(III)由(II)知,處取得極小值,此極小值也是最小值,
要使)恒成立,只需
,從而,解得
所以的取值范圍為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)設函(1)當時,求的極值;(2)當時,求的單調區間;(3若對任意,恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數在兩個極值點,且
(Ⅰ)求滿足的約束條件,并在下面的坐標平面內,畫出滿足這些條件的點的區域;

(II)證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數 
(1)若上是減函數,求的最大值;
(2)若的單調遞減區間是,求函數y=圖像過點的切線與兩坐標軸圍成圖形的面積。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,函數(其中為自然對數的底數).
(1)求函數在區間上的最小值;
(2)是否存在實數,使曲線在點處的切線與軸垂直? 若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

定義在上的函數滿足

的導函數,已知函數的圖像如右圖所示,
若兩正數滿足,則的取值范圍是                

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數,其中
(1)當滿足什么條件時,取得極值?
(2)已知,且在區間上單調遞增,試用表示出的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數單調遞減,
(I)求a的值;
(II)是否存在實數b,使得函數的圖象恰有3個交點,若的取值范圍數b的值;若不存在,試說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數)的零點都在區間[-10,10]上,則使得方程有正整數解的實數的取值個數為                          (   )
A.1;B.2;C.3;D.4.

查看答案和解析>>

同步練習冊答案