中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知tanα=
1
3
,則 
cosα+sinα
cosα-sinα
=
2
2
分析:tanα=
1
3
代入
cosα+sinα
cosα-sinα
=
1+tanα
1-tanα
,運算求得結果.
解答:解:由于tanα=
1
3
,∴
cosα+sinα
cosα-sinα
=
1+tanα
1-tanα
=
1+
1
3
1-
1
3
=2,
故答案為:2.
點評:本題主要考查同角三角函數的基本關系的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知tanθ=
1
3
,則cos2θ+
1
2
sin2θ=(  )
A、-
6
5
B、-
4
5
C、
4
5
D、
6
5

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanα=
1
3
,則 
sinα-4cosα
5sinα+2cosα
=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tan(π+α)=-
1
3
,則
2
cos(α+
π
4
)
cosα+sinα
=
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanα=-
1
3
,cosβ=
5
5
,α,β∈(0,π)

(1)求sinβ的值;   (2)求tan(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanα=-
1
3
cosβ=
5
5
,α,β∈(0,π),則α+β=
4
4

查看答案和解析>>

同步練習冊答案