中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
[已知數列{an}滿足:,a2=1,數列為等差數列;數列{bn}中,Sn為其前n項和,且
(1)求證:數列{bn}是等比數列;
(2)記An=anan+1,求數列{An}的前n項和S;
(3)設數列{cn}滿足,Tn為數列{cn}的前n項和,求xn=Tn+1-2Tn+Tn-1的最大值.
【答案】分析:(1)根據給出的數列{bn}的前n項和所滿足的等式,求出Sn,然后由求出通項,繼而可說明數列{bn}是等比數列;
(2)由數列為等差數列求出數列{an}的通項公式,然后運用裂項法求數列{An}的前n項和S;
(3)把an,bn的通項公式代入求cn,把xn=Tn+1-2Tn+Tn-1變形后換上cn,得到關于n的函數式,寫出Xn+1,與Xn作差后分析差式的單調性,從而得到Xn的最大值.
解答:解:(1)由得,,當n≥2時,,又,故,故數列{bn}是等比數列;
(2)∵,∴,∴d==3,∴,則


(3)∵


故當n≤7時,{xn}是遞減的,當n≥8時,{xn}是遞增的,但n≥8時,xn<0
故xn的最大值為
點評:本題是等差數列和等比數列的綜合題,考查了裂項法對數列求和,(3)的解答運用函數思想,借助于函數的單調性分析出了函數取最大值時的n的值,該題是中檔以上難度題型.
練習冊系列答案
相關習題

科目:高中數學 來源:山東省棗莊市2010屆高三年級調研考試數學文科試題 題型:044

已知數列{an}滿a1=1,任意n∈N*,有a1+3a2+5a3+…+(2n-1)an=pn(p為常數)

(1)求p的值及數列{an}的通項公式;

(2)令bn=anan+1(n∈N*),求數列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案