已知函數(shù)
定義在
上,對(duì)于任意的
,有
,且當(dāng)
時(shí),
.
(1)驗(yàn)證函數(shù)
是否滿(mǎn)足這些條件;
(2)若
,且
,求
的值.
(3)若
,試解關(guān)于
的方程
.
(1)根據(jù)抽象函數(shù)定義可知,
滿(mǎn)足條件。
(2)![]()
解析試題分析:解:(1)由
可得
,即其定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/6/16yni2.png" style="vertical-align:middle;" />
又![]()
![]()
![]()
又當(dāng)
時(shí),![]()
![]()
![]()
故
滿(mǎn)足這些條件.
(2)令
,
,令
,有
,
為奇函數(shù)
由條件得
,解得
.
(3)設(shè)
,則
,
,
則
,
,![]()
在
上是減函數(shù)![]()
原方程即為
,![]()
又
故原方程的解為
.
考點(diǎn):函數(shù)性質(zhì)與方程解
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)函數(shù)的性質(zhì)以及方程的解的運(yùn)用,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的圖像如右所示。![]()
(1)求證:
在區(qū)間
為增函數(shù);
(2)試討論
在區(qū)間
上的最小值.(要求把結(jié)果寫(xiě)成分段函數(shù)的形式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
,
滿(mǎn)足
. (1) 求函數(shù)
的單調(diào)遞增區(qū)間;
(2)設(shè)
三內(nèi)角
所對(duì)邊分別為
且
,求
在
上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R.
(1)若a+b≥0,求證:f(a)+f(b)≥f(-a)+f(-b);
(2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(1)求
的單調(diào)區(qū)間;
(2)若關(guān)于
的方程
有3個(gè)不同實(shí)根,求實(shí)數(shù)
的取值范圍;
(3)已知當(dāng)![]()
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
是
的一個(gè)極值點(diǎn).
(1)求
的單調(diào)遞增區(qū)間;
(2)若當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,其中
.
(Ⅰ)當(dāng)
時(shí),求不等式
的解集;
(Ⅱ)若不等式
的解集為
,求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com