已知橢圓
的離心率為
,以原點(diǎn)
為圓心,橢圓的短半軸長為半徑的圓與直線
相切。
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓
相交于
、
兩點(diǎn),且
,試判斷
的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知
,
,
,
分別是橢圓
的四個(gè)頂點(diǎn),△
是一個(gè)邊長為2的等邊三角形,其外接圓為圓
.
(1)求橢圓
及圓
的方程;
(2)若點(diǎn)
是圓
劣弧
上一動(dòng)點(diǎn)(點(diǎn)
異于端點(diǎn)
,
),直線
分別交線段
,橢圓
于點(diǎn)
,
,直線
與
交于點(diǎn)
.
(。┣
的最大值;
(ⅱ)試問:
,
兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線
:
的準(zhǔn)線與
軸交于點(diǎn)
,焦點(diǎn)為
;橢圓
以
和
為焦點(diǎn),離心率
.設(shè)
是
與
的一個(gè)交點(diǎn).![]()
(1)求橢圓
的方程.
(2)直線
過
的右焦點(diǎn)
,交
于
兩點(diǎn),且
等于
的周長,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
過點(diǎn)
,且離心率為
.斜率為
的直線
與橢圓
交于A、B兩點(diǎn),以
為底邊作等腰三角形,頂點(diǎn)為
.
(1)求橢圓
的方程;
(2)求△
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上的橢圓過點(diǎn)
,且它的離心率
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓
相切的直線
交橢圓于
兩點(diǎn),若橢圓上一點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左右焦點(diǎn)分別為
、
,短軸兩個(gè)端點(diǎn)為
、
,且四邊形
是邊長為2的正方形.
(1)求橢圓方程;
(2)若
分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)
滿足
,連接
,交橢圓于點(diǎn)
,證明:
為定值;
(3)在(2)的條件下,試問
軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得以
為直徑的圓恒過直線
的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線
相切.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)
作斜率為
的直線
交曲線
于
、
兩點(diǎn),且
,又點(diǎn)
關(guān)于原點(diǎn)
的對(duì)稱點(diǎn)為點(diǎn)
,試問
、
、
、
四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的右焦點(diǎn)
與拋物線
的焦點(diǎn)重合,過
且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點(diǎn),且![]()
![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點(diǎn),若過點(diǎn)M(2,0)的直線
與橢圓相交于不同兩點(diǎn)A和B,且滿足
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率e=
,一條準(zhǔn)線方程為x=![]()
(1)求橢圓C的方程;
(2)設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.
①當(dāng)直線OG的傾斜角為60°時(shí),求△GOH的面積;
②是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com