中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•石景山區一模)設函數f(x)=
-x+a,x<
1
2
log2x,x≥
1
2
的最小值為-1,則實數a的取值范圍是
a≥-
1
2
a≥-
1
2
分析:根據函數在(-∞,
1
2
)上單調遞減,求出函數的最值,根據題意建立不等式,解之即可.
解答:解:當x<
1
2
時,f(x)=-x+a,該函數在(-∞,
1
2
)上單調遞減
則-x+a>-
1
2
+a
而函數f(x)=
-x+a,x<
1
2
log2x,x≥
1
2
的最小值為-1
∴-
1
2
+a≥-1解之a≥-
1
2

故答案為:a≥-
1
2
點評:本題主要考查了分段函數最值的應用,利用函數的單調性研究最值是解題的關鍵,同時考查了運算求解的能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•石景山區一模)在復平面內,復數
2-i
1+i
對應的點位于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•石景山區一模)在△ABC中,角A,B,C所對應的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若cosA=
2
2
,a=2
,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•石景山區一模)已知函數f(x)=x2+2alnx.
(Ⅰ)若函數f(x)的圖象在(2,f(2))處的切線斜率為1,求實數a的值;
(Ⅱ)求函數f(x)的單調區間;
(Ⅲ)若函數g(x)=
2x
+f(x)
在[1,2]上是減函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•石景山區一模)定義:若數列{An}滿足An+1=An2,則稱數列{An}為“平方遞推數列”.已知數列{an}中,a1=2,點(an,an+1)在函數f(x)=2x2+2x的圖象上,其中n為正整數.
(1)證明:數列{2an+1}是“平方遞推數列”,且數列{lg(2an+1)}為等比數列.
(2)設(1)中“平方遞推數列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數列{an}的通項及Tn關于n的表達式.
(3)記bn=log2an+1Tn,求數列{bn}的前n項之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•石景山區一模)圓
x=2cosθ
y=2sinθ+2
的圓心坐標是(  )

查看答案和解析>>

同步練習冊答案