(本題滿分12分)
已知中心在原點O,焦點在x軸上的橢圓E過點(1,
),離心率為
.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線x+y+1=0與橢圓E相交于A、B(B在A上方)兩點,問是否存在直線l,使l與橢圓相交于C、D(C在D上方)兩點且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.
(1)
=1.(2)![]()
解析試題分析:解:(Ⅰ)設橢圓的方程為
=1(a>b>0),由題意可得
解得a2=4,b2=3.
∴橢圓的方程為
=1. ……4分
(Ⅱ)由于直線x+y+1=0過橢圓的左焦點F1(-1,0),且斜率為-1,由對稱性可知,存在直線l過橢圓的右焦點F2(1,0),且斜率為-1的直線l:x+y-1=0符合題意.
直線x+y+1=0與直線x+y-1=0的距離為d=
=
. ……7分
聯立
得7x2-8x-8=0.
設C(x1,y1),B(x2,y2),則x1+x2=
,x1x2=-
. ……9分
|CD|=
×
=
×
=
.
故平行四邊形ABCD的面積S=
×
=
. ……12分
考點:本試題主要是考查了橢圓方程的求解,以及直線與橢圓的位置關系。
點評:對于圓錐曲線方程的求解,一般應用待定系數法來得到。同時要采用設而不求的聯立方程組的思想,研究直線與圓錐曲線的位置關系。
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓中心在原點,焦點在x軸上,離心率
,過橢圓的右焦點且垂直于長軸的弦長為![]()
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知直線
與橢圓相交于
兩點,且坐標原點
到直線
的距離為
,
的大小是否為定值?若是求出該定值,不是說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的離心率為
,且過點
,
為其右焦點.
(1)求橢圓
的方程;
(2)設過點
的直線
與橢圓相交于
、
兩點(點
在
兩點之間),若
與
的面積相等,試求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線
所圍成的封閉圖形的面積為
,曲線
的內切圓半徑為
.記
為以曲線
與坐標軸的交點為頂點的橢圓.
(1)求橢圓
的標準方程;
(2)設
是過橢圓
中心的任意弦,
是線段
的垂直平分線.
是
上異于橢圓中心的點.
(i)若
(
為坐標原點),當點
在橢圓
上運動時,求點
的軌跡方程;
(ii)若
是
與橢圓
的交點,求
的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為
,且過
,設點
.
(1)求該橢圓的標準方程;
(2)若
是橢圓上的動點,求線段
中點
的軌跡方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點,焦點在坐標軸上的橢圓
,它的離心率為
,一個焦點和拋物線
的焦點重合,過直線
上一點M引橢圓
的兩條切線,切點分別是A,B.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若在橢圓
上的點
處的橢圓的切線方程是
. 求證:直線
恒過定點
;并出求定點
的坐標.
(Ⅲ)是否存在實數
,使得
恒成立?(點
為直線
恒過的定點)若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,斜率為1的直線過拋物線
的焦點F,與拋物線交于兩點A,B,![]()
(1)若|AB|=8,求拋物線
的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求
的面積S的最大值;
(3)設P是拋物線
上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)雙曲線
的離心率為2,坐標原點到
直線AB的距離為
,其中A
,B
.
(1)求雙曲線的方程;
(2)若
是雙曲線虛軸在
軸正半軸上的端點,過
作直線與雙曲線交于
兩點,求
時,直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com