如圖,在四棱錐
中,側(cè)棱
底面
,底面
為矩形,
為
上一點(diǎn),
,
.![]()
(I)若
為
的中點(diǎn),求證
平面
;
(II)求三棱錐
的體積.
(I)詳見(jiàn)解析;(II)三棱錐
的體積為
.
解析試題分析:(I)要證線面平行,先構(gòu)造面外線平行于面內(nèi)線;(II)求三棱錐的體積關(guān)鍵是選擇適當(dāng)?shù)牡酌妫员阌谇蟾邽闃?biāo)準(zhǔn),為此要先考察線面垂直.
試題解析:(I)若
為
的中點(diǎn),
為
上一點(diǎn),
,故
,
都是線段
的三等分點(diǎn).
設(shè)
與
的交點(diǎn)為
,由于底面
為矩形,則
是
的中位線,故有
,而
平面
,
平面
內(nèi),故
平面
.
(II)由于側(cè)棱
底面
,且
為矩形,故有
,
,
,故
平面
,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/71/7/zxl7v.png" style="vertical-align:middle;" />,
,所以三棱錐
的體積![]()
.
考點(diǎn):直線與平面平行的判定、直線與平面垂直的判定、三棱錐的體積公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐
中,四邊形
為矩形,
為等腰三角形,
,平面
平面
,且
,
分別為
和
的中點(diǎn).![]()
(Ⅰ)證明:
平面
;
(Ⅱ)證明:平面
平面
;
(Ⅲ)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,側(cè)面
底面
,
,
為
中點(diǎn),底面
是直角梯形,
,![]()
,
,
.![]()
(1) 求證:
平面
;
(2) 求證:平面
平面
;
(3) 設(shè)
為棱
上一點(diǎn),
,試確定
的值使得二面角
為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形
均為全等的直角梯形,且
,
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)設(shè)
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,菱形
的邊長(zhǎng)為4,
,
.將菱形
沿對(duì)角線
折起,得到三棱錐
,點(diǎn)
是棱
的中點(diǎn),
.![]()
(1)求證:
平面
;
(2)求證:平面![]()
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖已知:菱形
所在平面與直角梯形ABCD所在平面互相垂直,
,
點(diǎn)
分別是線段
的中點(diǎn). ![]()
(1)求證:平面![]()
平面
;
(2)試問(wèn)在線段
上是否存在點(diǎn)
,使得![]()
平面
,若存在,求
的長(zhǎng)并證明;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA丄平面ABCD,
=
=90°
=1200,AD=AB=1,AC交BD于 O 點(diǎn).
(I)求證:平面PBD丄平面PAC;
(Ⅱ)求三棱錐D-ABP和三棱錐B-PCD的體積之比.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在五面體
中,四邊形
是正方形,
平面
∥![]()
![]()
(1)求異面直線
與
所成角的余弦值;
(2)證明:
平面
;
(3)求二面角
的正切值。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com