中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在直線l:x-y+9=0上任取一點P,過點P以橢圓=1的焦點為焦點作橢圓.點P在何處時,所求橢圓的長軸最短?并求出長軸最短時的橢圓方程.

解:設所求橢圓的方程為=1,與x-y+9=0聯立得(2a2-9)x2+18a2x+90a2-a4=0,點P在直線x-y+9=0上,所以Δ=(18a22-4(2a2-9)(90a2-a4)≥0,即a4-54a2+405≥0.解之得a2≥45或a2≤9,因為a>c=3,所以a2≥45.所以橢圓的長軸最短時的方程為=1.聯立=1和x-y+9=0得點P(-5,4).

點撥:利用判別式可以確定參數的取值范圍,再加以討論便可得到最后的結果.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在直線L:x-y+9=0上任取一點p以橢圓
x2
12
+
y2
3
=1的焦點為焦點作橢圓.
(1)p在何處時,所求橢圓的長軸最短;
(2)求長軸最短的橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓M:2x2+2y2-8x-8y-1=0,直線l:x+y-9=0,過l上一點A作△ABC,使得∠BAC=45°,邊AB過圓心M,且B,C在圓M上,求點A縱坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直線L:x-y+9=0上任取一點p以橢圓
x2
12
+
y2
3
=1的焦點為焦點作橢圓.
(1)p在何處時,所求橢圓的長軸最短;
(2)求長軸最短的橢圓方程.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學復習(第8章 圓錐曲線):8.9 解幾何最值問題(解析版) 題型:解答題

在直線L:x-y+9=0上任取一點p以橢圓=1的焦點為焦點作橢圓.
(1)p在何處時,所求橢圓的長軸最短;
(2)求長軸最短的橢圓方程.

查看答案和解析>>

同步練習冊答案