中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

隨著經濟的發展,人們生活水平的提高,中學生的營養與健康問題越來越得到學校與家長的重視. 從學生體檢評價報告單了解到某校3000名學生的體重發育評價情況,得右表:

 
偏瘦
正常
肥胖
女生(人)
300
865

男生(人)

885

已知從這批學生中隨機抽取1名學生,抽到偏瘦男生的概率為0.15.
(Ⅰ)求的值;
(Ⅱ)若用分層抽樣的方法,從這批學生中隨機抽取60名,問應在肥胖學生中抽出多少名?
(Ⅲ)已知,求肥胖學生中男生不少于女生的概率.

(Ⅰ)=450;(Ⅱ)應在肥胖學生中抽10名;(Ⅲ).

解析試題分析:(Ⅰ)利用“從3000名學生中隨機抽取1名學生,抽到偏瘦男生的概率為0.15”可求得;(Ⅱ)根據分層抽樣可求;(Ⅲ)利用古典概型求解.
試題解析:(Ⅰ)由題意可知, ∴=450(人)     3分
(Ⅱ)由題意知,肥胖學生人數為(人)。 設應在肥胖學生中抽取 人,
, ∴(人)   答:應在肥胖學生中抽10名    6分
(Ⅲ)由題意可知, ,且,滿足條件的
)有(243,257),(244,256), ,(257,243),共有15組。
設事件A:“肥胖學生中男生不少于女生”,即,滿足條件的(
(243,257),(244,256), ,(250,250),共有8組,所以
答:肥胖學生中男生不少于女生的概率為    12分
考點:分層抽樣,古典概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求摸2次恰好第2次中獎的概率;
(Ⅱ)每次同時摸2個,并放回,摸到的2個球中至少有1個紅球則中獎,連續摸4次,求中獎次數X的數學期望E(X).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某校學習小組開展“學生語文成績與外語成績的關系”的課題研究,對該校高二年級800名學生上學期期末語文和外語成績,按優秀和不優秀分類得結果:語文和外語都優秀的有60人,語文成績優秀但外語不優秀的有140人,外語成績優秀但語文不優秀的有100人.
(Ⅰ)能否在犯錯概率不超過0.001的前提下認為該校學生的語文成績與外語成績有關系?
(Ⅱ)4名成員隨機分成兩組,每組2人,一組負責收集成績,另一組負責數據處理。求學生甲分到負責收集成績組,學生乙分到負責數據處理組的概率。


0.010
0.005
0.001

6.635
7.879
10.828
附:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某超市在節日期間進行有獎促銷,凡在該超市購物滿300元的顧客,將獲得一次摸獎機會,規則如下:獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球.顧客不放回的每次摸出1個球,若摸到黑球則停止摸獎,否則就要將獎盒中的球全部摸出才停止.規定摸到紅球獎勵10元,摸到白球或黃球獎勵5元,摸到黑球不獎勵.
(Ⅰ)求1名顧客摸球3次停止摸獎的概率;
(Ⅱ)記為1名顧客摸獎獲得的獎金數額,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個口袋中有個白球和個紅球,每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.
(Ⅰ)試用含的代數式表示一次摸球中獎的概率
(Ⅱ)若,求三次摸球恰有一次中獎的概率;
(Ⅲ)記三次摸球恰有一次中獎的概率為,當為何值時,取最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某社團組織名志愿者利用周末和節假日參加社會公益活動,活動內容是:1、到各社區宣傳慰問,倡導文明新風;2、到指定的醫院、福利院做義工,幫助那些需要幫助的人.各位志愿者根據各自的實際情況,選擇了不同的活動項目,相關的數據如下表所示:

 
宣傳慰問
義工
總計
20至40歲
11
16
27
大于40歲
15
8
23
總計
26
24
50
(1) 分層抽樣方法在做義工的志愿者中隨機抽取6名,年齡大于40歲的應該抽取幾名?
(2) 上述抽取的6名志愿者中任取2名,求選到的志愿者年齡大于40歲的人數的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為增強市民的節能環保意識,某市面向全市征召義務宣傳志愿者.從符合條件的500名志愿者中隨機抽取100名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區間是:.
(I)求圖中的值并根據頻率分布直方圖估計這500名志愿者中年齡在歲的人數;
(II)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場的宣傳活動,再從這20名中采用簡單隨機抽樣方法選取3名志愿者擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數為,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某聯歡晚會舉行抽獎活動,舉辦方設置了甲.乙兩種抽獎方案,方案甲的中獎率為,中將可以獲得2分;方案乙的中獎率為,中將可以得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中將與否互不影響,晚會結束后憑分數兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(2)若小明.小紅兩人都選擇方案甲或方案乙進行抽獎,問:他們選擇何種方案抽獎,累計的得分的數學期望較大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年3月2日,國家環保部發布了新修訂的《環境空氣質量標準》.其中規定:居民區的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環保部門隨機抽取了一居民區去年20天PM2.5的24小時平均濃度的監測數據,數據統計如下:

組別
PM2.5濃度
(微克/立方米)
頻數(天)
頻率
 第一組
(0,25]
5
0.25
第二組
(25,50]
10
0.5
第三組
(50,75]
3
0.15
第四組
(75,100)
2
0.1
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區的環境是否需要改進?說明理由.

查看答案和解析>>

同步練習冊答案