已知橢圓
的離心率為
,直線
過點
,
,且與橢圓
相切于點
.(Ⅰ)求橢圓
的方程;(Ⅱ)是否存在過點
的直線
與橢圓
相交于不同的兩點
、
,使得
?若存在,試求出直線
的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
已知橢圓C:
的離心率為
,右焦點到直線
的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線
與橢圓C交于A、B兩點,且線段AB中點恰好在直線
上,求△OAB的面積S的最大值.(其中O為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
的焦點與橢圓
的右焦點重合.(Ⅰ)求拋物線
的方程;
(Ⅱ)動直線
恒過點
與拋物線
交于A、B兩點,與
軸交于C點,請你觀察并判斷:在線段MA,MB,MC,AB中,哪三條線段的長總能構成等比數列?說明你的結論并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,以坐標原點O為極點x軸的正半軸為極軸建立極坐標系, 曲線C1的極坐標方程為:![]()
(1)求曲線C1的普通方程
(2)曲線C2的方程為
,設P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在
軸上,且過點
.![]()
(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓
相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足![]()
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點
,焦點在x軸上,離心率為
的橢圓過點(
,
).![]()
(1)求橢圓的方程;
(2)設不過原點
的直線與該橢圓交于
、
兩點,滿足直線
,
,
的斜率依次成等比數列,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,直角坐標系
中,一直角三角形
,
,B、D在
軸上且關于原點
對稱,
在邊
上,BD=3DC,△ABC的周長為12.若一雙曲線
以B、C為焦點,且經過A、D兩點.![]()
⑴ 求雙曲線
的方程;
⑵ 若一過點
(
為非零常數)的直線
與雙曲線
相交于不同于雙曲線頂點的兩點
、
,且
,問在
軸上是否存在定點
,使
?若存在,求出所有這樣定點
的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為
.![]()
(1)求橢圓方程;
(2)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段
所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com