中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•西城區一模)已知集合A={x|x=a0+a1×2+a2×22+a3×23},其中ak∈{0,1}(k=0,1,2,3),且a3≠0.則A中所有元素之和是(  )
分析:由題意可知a0,a1,a2,各有2種取法(均可取0,1),a3有1種取法,利用數列求和即可求得A中所有元素之和.
解答:解:由題意可知,a0,a1,a2各有2種取法(均可取0,1),a3有1種取法,
由分步計數原理可得共有2×2×2×1=8種方法,
∴當a0取0,1時,a1,a2各有2種取法,a3有1種取法,共有2×2×1=4種方法,
即集合A中含有a0項的所有數的和為(0+1)×4=4;
同理可得集合A中含有a1項的所有數的和為(2×0+2×1)×4=8;
集合A中含有a2項的所有數的和為(22×0+22×1)×4=16;
集合A中含有a3項的所有數的和為(23×1+23×0)×8=64;
由分類計數原理得集合A中所有元素之和:
S=4+8+16+64=92
故選C
點評:本題考查數列的求和,考查分類計數原理與分步計數原理的應用,考查分類討論與轉化思想的綜合應用,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•西城區一模)已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中ak∈{0,1,2}(k=0,1,2,3),且a3≠0.則A中所有元素之和等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•西城區一模)若a=log23,b=log32,c=log46,則下列結論正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•西城區一模)在△ABC中,已知2sinBcosA=sin(A+C).
(Ⅰ)求角A;
(Ⅱ)若BC=2,△ABC的面積是
3
,求AB.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•西城區一模)乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結束),假設兩人在每一局比賽中獲勝的可能性相同.
(Ⅰ)求甲以4比1獲勝的概率;
(Ⅱ)求乙獲勝且比賽局數多于5局的概率;
(Ⅲ)求比賽局數的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•西城區一模)如圖,AC為⊙O的直徑,OB⊥AC,弦BN交AC于點M.若OC=
3
,OM=1,則MN=
1
1

查看答案和解析>>

同步練習冊答案