中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本題滿分15分)已知函數
(Ⅰ)若為定義域上的單調函數,求實數m的取值范圍;
(Ⅱ)當時,求函數的最大值;
(Ⅲ)當,且時,證明:

解: (Ⅰ),
---------2分
若f(x)在上是增函數,則,即恒成立,
,故m≥0;-----------------------------------------2分
若f(x)在上是減函數,則,即恒成立,
,故這樣的m不存在.------------------------------1分
經檢驗,當m≥0時,恒成立,
∴當m≥0時,f(x)在定義域上是單調增函數.---------------------1分
(Ⅱ)當m =-1時,,則----------1分
時,,此時f(x)為增函數,
時,,此時f(x)為減函數----------------------------2分
在x = 0時取得最大值,最大值為----------------------1分
(Ⅲ)當m = 1時,令,--1分
在[0,1]上總有,即在[0,1]上遞增------------------------------1分
∴當時,,即----1分
,由(Ⅱ)知它在[0,1]上遞減,所以當時,,即-----------------1分
綜上所述,當m = 1,且時,---------------1分

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,
①求函數的單調區間。
②若函數的圖象在點(2,)處的切線的傾斜角為,對任意的,函數在區間上總不是單調函數,求m取值范圍
③求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,
(1)求的單調區間和最小值;
(2)討論的大小關系;
(3)求的取值范圍,使得對任意>0成立

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
函數,其中為常數.
(1)證明:對任意,的圖象恒過定點;
(2)當時,判斷函數是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對任意時,恒為定義域上的增函數,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數上是增函數,在上是減函數,且方程有三個根,它們分別是
(1)求的值;    (2)求證:        (3)求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)函數
(Ⅰ)若處的切線相互垂直,求這兩個切線方程;
(Ⅱ)若單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知函數
(1)若上恒為增函數,求的取值范圍;
(2)求在區間上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(14分)已知函數
(1)當t=1時,求曲線處的切線方程;
(2)當t≠0時,求的單調區間;
(3)證明:對任意的在區間(0,1)內均存在零點。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知x = 1是的一個極值點
(I)求b的值;
(II)求函數f(x)的單調減區間;
(III)設,試問過點(2,5)可作多少條直線與曲線相切?請說明理由.

查看答案和解析>>

同步練習冊答案