中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(文科)(1)若數列{an1}是數列{an}的子數列,試判斷n1與l的大小關系;
(2)①在數列{an}中,已知{an}是一個公差不為零的等差數列,a5=6.當a3=2時,若存在自然數n1,n2,…,nl,…滿足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…是等比數列,試用t表示n1
②若存在自然數n1,n2,…,nl,…滿足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…構成一個等比數列.求證:當a3是整數時,a3必為12的正約數.

解(1)∵數列{an1}是數列{an}的子數列
∴nt≥t;
(2)①因為
從而nt≥tan=a5+(n-5)d=2n-4,
又a3,a5,a7,a9…an…是等比數列,
所以公比q=
所以

所以2nt-4=2•3t+1
所以nt=3t+1+2
②因為成等比數列,所以,即=
又{an}是等差數列,所以=
所以=
所以,因為6-a3≠0
所以解得
因為n1是整數,且n1>5所以是正整數,從而整數a3必為12的正約數.
分析:(1)利用數列{an1}是數列{an}的子數列,判斷出nt≥t
(2)①求出數列{an}的公差,利用等差數列的通項公式求出數列an,求出數列{an1}的公比;利用是數列{an}的第nt項求出值同時是數列{an1}的第t項利用等比數列的通項公t表示n1式求出值,兩個方法求出的值相等,列出方程得到nt=3t+1+2.
②分別通過兩個數列表示出同一個項,列出關于a3,n1的方程,據各個數的特殊性,證出結論.
點評:在解決同一個項分別充當兩個不同數列的項,關鍵是判斷出其分別是兩個數列的項數,然后利用不同的通項公式表示出其值,列出方程,找關系.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)[文科]若g(x)=lgx是(2)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項.
[理科]根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(文科)(1)若數列{an1}是數列{an}的子數列,試判斷n1與l的大小關系;
(2)①在數列{an}中,已知{an}是一個公差不為零的等差數列,a5=6.當a3=2時,若存在自然數n1,n2,…,nl,…滿足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…是等比數列,試用t表示n1
②若存在自然數n1,n2,…,nl,…滿足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…構成一個等比數列.求證:當a3是整數時,a3必為12的正約數.

查看答案和解析>>

科目:高中數學 來源: 題型:

(文科)已知數列{an}的各項均為正數,其前項和為,且對于任意的,都有點(an,Sn)在直線y=2x-2上
(1)求數列{an}的通項公式;
(2)若bn=2log2an-1,求數列{
bnan
}
的前n項和Tn

查看答案和解析>>

科目:高中數學 來源:2011年湖北省黃岡市黃州一中高考數學模擬試卷(二)(解析版) 題型:解答題

(文科)(1)若數列{an1}是數列{an}的子數列,試判斷n1與l的大小關系;
(2)①在數列{an}中,已知{an}是一個公差不為零的等差數列,a5=6.當a3=2時,若存在自然數n1,n2,…,nl,…滿足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…是等比數列,試用t表示n1
②若存在自然數n1,n2,…,nl,…滿足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…構成一個等比數列.求證:當a3是整數時,a3必為12的正約數.

查看答案和解析>>

同步練習冊答案