中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
數列
2
5
,2
2
11
,…
,則
23
是該數列的(  )
分析:根據數列的前幾項找規律,歸納出數列的通項公式,再令an
23
,解方程即可.
解答:解:數列
2
5
,2
2
11
,…,中的各項可變形為:
數列
2
5
8
11
,…,
∴通項公式為an=
2+3(n-1)

2+3(n-1)
=
23
,得,n=8.
故選C.
點評:本題考查了觀察法求數列的通項公式,以及利用通項公式計算數列的項的方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,a3,…,am(m為正整數)滿足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數列“例如,數列1,2,5,2,1與數列8,4,2,2,4,8都是“對稱數列”.設{bn}是項數為2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,23,…,2m-1依次為該數列中連續的前m項,則數列{bn}的前2010項和S2010可以是
(1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
其中正確命題的個數為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的通項公式為an=(2n-1)•2n,我們用錯位相減法求其前n項和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,兩式項減得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.類比推廣以上方法,若數列{bn}的通項公式為bn=n2•2n
則其前n項和Tn=
(n2-2n+3)•2n+1-6

查看答案和解析>>

科目:高中數學 來源: 題型:

若有窮數列a1,a2…an(n是正整數),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數,且1≤i≤n),就稱該數列為“對稱數列”.已知數列{bn}是項數為7的對稱數列,且b1,b2,b3,b4成等差數列,b1=2,b4=11試寫出{bn}所有項
2,5,8,11,8,5,2
2,5,8,11,8,5,2

查看答案和解析>>

科目:高中數學 來源: 題型:

兩千多年前,古希臘畢達哥拉斯學派的數學家曾經在沙灘上研究數學問題,他們在沙灘上畫點或用小石子來表示數,按照點或小石子能排列的形狀對數進行分類,如圖2中的實心點個數1,5,12,22,…,被稱為五角形數,其中第1個五角形數記作a1=1,第2個五角形數記作a2=5,第3個五角形數記作a3=12,第4個五角形數記作a4=22,…,若按此規律繼續下去,得數列{an},則an-an-1=
3n-2(n≥2)
3n-2(n≥2)

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合W是滿足下列兩個條件的無窮數列{an}的集合:①
an+an+2
2
an+1
②an≤M,其中n∈N*,M是與n無關的常數
(1)若{an}是等差數列,Sn是其前n項的和,a3=4,S3=18,試探究{Sn}與集合W之間的關系;
(2)設數列{bn}的通項為bn=5n-2n,且{bn}∈W,M的最小值為m,求m的值;
(3)在(2)的條件下,設Cn=
1
5
[bn+(m-5)n]+
2
,求證:數列{Cn}中任意不同的三項都不能成為等比數列.

查看答案和解析>>

同步練習冊答案