已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為
和
,且|![]()
|=2,
點(1,
)在該橢圓上.
(1)求橢圓C的方程;
(2)過
的直線
與橢圓C相交于A,B兩點,若
A
B的面積為
,求以
為圓心且與直線
相切圓的方程.
(1)![]()
(2)![]()
解析試題分析:(1)設橢圓的方程,用待定系數法求出
的值;(2)解決直線和橢圓的綜合問題時注意:第一步:根據題意設直線方程,有的題設條件已知點,而斜率未知;有的題設條件已知斜率,點不定,可由點斜式設直線方程.第二步:聯立方程:把所設直線方程與橢圓的方程聯立,消去一個元,得到一個一元二次方程.第三步:求解判別式
:計算一元二次方程根.第四步:寫出根與系數的關系.第五步:根據題設條件求解問題中結論.
試題解析:解:(1)橢圓C的方程是
4分
(2)當直線
軸時,可得
的面積為3,不合題意。
當直線
與
軸不垂直時,設其方程為
,代入橢圓方程得:![]()
則
,可得![]()
又圓
的半徑
,∴
的面積![]()
=
,化簡得:
,得k=±1,∴r =
,圓的方程為
(12分)
考點:(1)橢圓的方程; (2)直線與橢圓的綜合問題.
科目:高中數學 來源: 題型:解答題
已知拋物線
.
(1)若直線
與拋物線
相交于
兩點,求
弦長;
(2)已知△
的三個頂點在拋物線
上運動.若點
在坐標原點,
邊過定點
,點
在
上且
,求點
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設
分別是橢圓
的左,右焦點.
(1)若
是橢圓在第一象限上一點,且
,求
點坐標;
(2)設過定點
的直線
與橢圓交于不同兩點
,且
為銳角(其中
為原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓![]()
的離心率為
,過
的左焦點
的直線
被圓
截得的弦長為
.
(1)求橢圓
的方程;
(2)設
的右焦點為
,在圓
上是否存在點
,滿足
,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的右焦點為
,
為上頂點,
為坐標原點,若△
的面積為
,且橢圓的離心率為
.
(1)求橢圓的方程;
(2)是否存在直線
交橢圓于
,
兩點, 且使點
為△
的垂心?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓
,稱圓心在坐標原點O,半徑為
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是
.
(1)若橢圓C上一動點
滿足
,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點
作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為
,求P點的坐標;
(3)已知
,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點
的直線的最短距離
.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
以下關于圓錐曲線的命題中:
①設A、B為兩個定點,k為非零常數,若|
|-|
| = k,則動點P的軌跡為雙曲線;
②過定圓C上一定點A作圓的動弦AB,O為坐標原點,若
=
(
+
), 則動點P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
=1與橢圓
=1有相同的焦點。
其中真命題的序號為______________(填上所有真命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
已知點M是拋物線y2=4x上的一點,F為拋物線的焦點,A在圓C:(x-4)2+(y-1)2=1上,則|MA|+|MF|的最小值為________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com