中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
由函數y=f(x)確定數列{an},an=f(n),若函數y=f(x)的反函數y=f-1(x)能確定數列{bn},bn=f-1(n),則稱數列{bn}是數列{an}的“反數列”。
(1)若函數f(x)=2確定數列{an}的反數列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式對任意的正整數n恒成立,求實數a的取值范圍;
(3)設(λ為正整數),若數列{cn}的反數列為{dn},{cn}與{dn}的公共項組成的數列為{tn}, 求數列{tn}前n項和Sn
解:(1)(n為正整數),

所以數列的反數列的通項公式(n為正整數)。
(2) 對于(1)中,不等式化為


 ∴數列單調遞增,
所以,,要使不等式恒成立,只要



所以,使不等式對于任意正整數n恒成立的a的取值范圍是
(3)設公共項為正整數,
當λ為奇數時,

(表示的子數列),
所以,的前n項和
當λ為偶數時,
,則,同樣有
所以,的前n項和
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),若函數y=f(x)的反函數y=f-1(x)能確定數列{bn},bn=f-1(n),則稱數列{bn}是數列{an}的“反數列”.
(1)若函數f(x)=2
x
確定數列{an}的反數列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數n恒成立,求實數a的取值范圍;
(3)設cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數)
,若數列{cn}的反數列為{dn},{cn}與{dn}的公共項組成的數列為{tn},求數列{tn}前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列{bn},bn=f-1(n),若對于任意n?N*,都有bn=an,則稱數列{bn}是數列{an}的“自反數列”.
(1)若函數f(x)=
px+1
x+1
確定數列{an}的自反數列為{bn},求an
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數數列{xn}的調和平均數,若dn=
2
an+1
-1
,Sn為數列{dn}的前n項之和,Hn為數列{Sn}的調和平均數,求
lim
n→∞
=
Hn
n

(3)已知正數數列{cn}的前n項之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=f(x)存在反函數y=f-1(x),由函數y=f(x)確定數列{an},an=f(n),由函數y=f-1(x)確定數列{bn},bn=f-1(n),則稱數列{bn}是數列{an}的“反數列”.
(1)若數列{bn}是函數f(x)=
x+1
2
確定數列{an}的反數列,試求數列{bn}的前n項和Sn
(2)若函數f(x)=2
x
確定數列{cn}的反數列為{dn},求{dn}的通項公式;
(3)對(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對任意的正整數n恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),若函數y=f(x)的反函數y=f-1(x)能確定數列{bn},bn=f-1(n),則稱數列{bn}是數列{an}的“反數列”.

(1)已知函數f(x)=2的反函數為f-1(x)=(x≥0),則由函數f(x)=2確定的數列{an}的反數列為{bn},求{bn}的通項公式;不等式++…+≥1-2a對任意的正整數n恒成立,求實數a的范圍;

(2)設函數y=3x確定的數列為{cn},{cn}的反數列為{dn},{cn}與{dn}的公共項組成的數列為{tn},求數列{tn}的前n項和Sn.

查看答案和解析>>

同步練習冊答案