科目:高中數學 來源: 題型:解答題
已知函數f(x)=x3+
x2+ax+b,g(x)=x3+
x2+ 1nx+b,(a,b為常數).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數),求b的值;
(2)設函數f(x)的導函數為
,若存在唯一的實數x0,使得f(x0)=x0與f′(x0)=0同時成立,求實數b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
(
為實數,
),
,⑴若
,且函數
的值域為
,求
的表達式;
⑵設
,且函數
為偶函數,判斷
是否大0?
⑶設
,當
時,證明:對任意實數
,
(其中
是
的導函數) .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com