在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為
(t為參數(shù)),P為C1上的動點,Q為線段OP的中點.
(1)求點Q的軌跡C2的方程;
(2)在以O(shè)為極點,x軸的正半軸為極軸(兩坐標(biāo)系取相同的長度單位)的極坐標(biāo)系中,N為曲線p=2sinθ上的動點,M為C2與x軸的交點,求|MN|的最大值.
(1)
;(2)
.
解析試題分析:本題主要考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,參數(shù)方程與普通方程的互化等數(shù)學(xué)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力以及計算能力.第一問,設(shè)出Q點坐標(biāo),利用中點坐標(biāo)公式得到P點坐標(biāo),而P在
上,代入到
的參數(shù)方程中即可得到
的參數(shù)方程;第二問,利用第一問
的方程可先求出M點坐標(biāo),將曲線
化為直角坐標(biāo)方程,利用兩點間距離公式再利用數(shù)形結(jié)合即可求出|MN|的最大值.
試題解析:①設(shè)Q(x,y),則點P(2x,2y),又P為C1上的動點,
所以
(t為參數(shù)),即
(t為參數(shù)).
所以C2的方程為
(t為參數(shù))(或4x+3y-4=0).(4分)
②由①可得點M(1,0),且曲線ρ=2sinθ的直角坐標(biāo)方程為x2+(y-1)2=1,
所以|MN|的最大值為
.(7分)
考點:1.極坐標(biāo)方程與直角坐標(biāo)方程的互化;2.參數(shù)方程與普通方程的互化.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)).
(1)分別求出曲線
和直線
的直角坐標(biāo)方程;
(2)若點
在曲線
上,且
到直線
的距離為1,求滿足這樣條件的點
的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面直角坐標(biāo)系
,以
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,,曲線
的參數(shù)方程為
.點
是曲線
上兩點,點
的極坐標(biāo)分別為
.
(1)寫出曲線
的普通方程和極坐標(biāo)方程;
(2)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中, O為極點, 半徑為2的圓C的圓心的極坐標(biāo)為
.
(1)求圓C的極坐標(biāo)方程;
(2)在以極點O為原點,以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線
的參數(shù)方程為
(t為參數(shù)),直線
與圓C相交于A,B兩點,已知定點
,求|MA|·|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
(φ為參數(shù)),曲線C2的參數(shù)方程為
(a>b>0,φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α與C1,C2各有一個交點.當(dāng)α=0時,這兩個交點間的距離為2,當(dāng)α=
時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值.
(2)設(shè)當(dāng)α=
時,l與C1,C2的交點分別為A1,B1,當(dāng)α=-
時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C:ρsin(θ+
)=
,曲線P:ρ2-4ρcosθ+3=0,
(1)求曲線C,P的直角坐標(biāo)方程.
(2)設(shè)曲線C和曲線P的交點為A,B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(t為參數(shù),
)
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(2)若直線
經(jīng)過點
,求直線
被曲線C截得的線段AB的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
為參數(shù)),以該直角坐標(biāo)系的原點
為極點,
軸的正半軸為極軸的極坐標(biāo)系下,曲線
的方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線
和曲線
的交點
、
,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com