中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知的最大值為,最小值為。求函數的周期、最值,并求取得最值時的之值;并判斷其奇偶性。

 

 

【答案】

 

a=;b=1;  周期: ; 

時取得最大值為2,當時取得最小值為-2;奇函數

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知f(x)=ax2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值為數學公式,最小值為數學公式,求證:數學公式
(2)當數學公式時,對于給定的負數a,有一個最大的正數m(a),使得x∈[0,m(a)]時都有|f(x)|≤5,問a為何值時,m(a)最大,并求這個最大值m(a),證明你的結論.
(3)若f(x)同時滿足下列條件:①a>0;②當|x|≤2時,有|f(x)|≤2;③當|x|≤1時,f(x)最大值為2,求f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源:2003-2004學年湖北省“鄂南高中、華師一附中、黃岡中學、黃石二中、荊州中學、襄樊四中、襄樊五中、孝感高中”八校高三1月聯考數學試卷(理科)(解析版) 題型:解答題

已知f(x)=ax2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值為,最小值為,求證:
(2)當時,對于給定的負數a,有一個最大的正數m(a),使得x∈[0,m(a)]時都有|f(x)|≤5,問a為何值時,m(a)最大,并求這個最大值m(a),證明你的結論.
(3)若f(x)同時滿足下列條件:①a>0;②當|x|≤2時,有|f(x)|≤2;③當|x|≤1時,f(x)最大值為2,求f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源:2010年高考數學專項復習:二次函數(解析版) 題型:解答題

已知f(x)=ax2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值為,最小值為,求證:
(2)當時,對于給定的負數a,有一個最大的正數m(a),使得x∈[0,m(a)]時都有|f(x)|≤5,問a為何值時,m(a)最大,并求這個最大值m(a),證明你的結論.
(3)若f(x)同時滿足下列條件:①a>0;②當|x|≤2時,有|f(x)|≤2;③當|x|≤1時,f(x)最大值為2,求f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源:2014屆湖南省高一上學期第一次階段性考試數學試卷 題型:解答題

已知的最大值為,最小值為。求函數的周期、最值,并求取得最值時的之值;并判斷其奇偶性。

 

查看答案和解析>>

同步練習冊答案