已知直線l: y="x-2" 與拋物線y2=2x相交于兩點(diǎn)A、B,
(1)求證:OA⊥OB
(2)求線段AB的長(zhǎng)度
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知拋物線C:
過(guò)點(diǎn)A ![]()
(1)求拋物線C 的方程;
(2)直線
過(guò)定點(diǎn)
,斜率為
,當(dāng)
取何值時(shí),直線
與拋物線C只有一個(gè)公共點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)設(shè)橢圓![]()
的右焦點(diǎn)為
,直線
與
軸交于點(diǎn)
,若
(其中
為坐標(biāo)原點(diǎn)).
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
上的任意一點(diǎn),
為圓
的任意一條直徑(
、
為直徑的兩個(gè)端點(diǎn)),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分l0分)直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的方程為
,直線
的方程為
(t為參數(shù)),直線
與曲線C的公共點(diǎn)為T(mén).
(Ⅰ)求點(diǎn)T的極坐標(biāo);(Ⅱ)過(guò)點(diǎn)T作直線
被曲線C截得的線段長(zhǎng)為2,求直線
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若拋物線y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9.它到焦點(diǎn)的距離為10,求拋物線方程和M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A、B、C是橢圓
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為
,BC過(guò)橢圓m的中心,且![]()
![]()
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
的直線l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,
設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且
,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)在直角坐標(biāo)系
中橢圓
:![]()
的左、右焦點(diǎn)分別為
、
.其中
也是拋物線
:
的焦點(diǎn),點(diǎn)
為
與
在第一象限的交點(diǎn),且
.
(1)求
的方程;(6分)
(2)平面上的點(diǎn)
滿足
,直線
∥
,且與
交于
、
兩點(diǎn),若
,求直線
的方程. (8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,且過(guò)
,設(shè)點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若
是橢圓上的動(dòng)點(diǎn),求線段
中點(diǎn)
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
標(biāo)準(zhǔn)方程下的橢圓的短軸長(zhǎng)為
,焦點(diǎn)
,右準(zhǔn)線
與
軸相交于點(diǎn)
,且
,過(guò)點(diǎn)
的直線和橢圓相交于點(diǎn)
.
(1)求橢圓的方程和離心率;
(2)若
,求直線
的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com