(本小題滿分14分)
在直角坐標(biāo)系xOy中,已知圓心在第二象限、半徑為2
的圓C與直線y=x相切于
坐標(biāo)原點(diǎn)O.橢圓
與圓C的一個交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10。
(1)求圓C的方程;
![]()
(2)試探究圓C上是否存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓的右焦點(diǎn)F的距離等于線段
OF的長,若存在求出Q的坐標(biāo);若不存在,請說明理由。
+ =1
(1)設(shè)圓心坐標(biāo)為(m,n)(m<0,n>0),則該圓的方程為(x-m)2+(y-n)2=8
已知該圓與直線y=x相切,那么圓心到該直線的距離等于圓的半徑,則
=2![]()
即
=4 ①
又圓與直線切于原點(diǎn),將點(diǎn)(0,0)代入得
m2+n2=8 ②
聯(lián)立方程①和②組成方程組解得
![]()
![]()
故圓的方程為(x+2)2+(y-2)2=8
(2)
=5,∴a2=25,則橢圓的方程為 + =1
其焦距c=
=4,右焦點(diǎn)為(4,0),那么
=4。
要探求是否存在異于原點(diǎn)的點(diǎn)Q,使得該點(diǎn)到右焦點(diǎn)F的距離等于
的長度4,我們可以轉(zhuǎn)化為探求以右焦點(diǎn)F為頂點(diǎn),半徑為4的圓(x─4)2+y2=8與(1)所求的圓的交點(diǎn)數(shù)。通過聯(lián)立兩圓的方程解得x=
,y=
即存在異于原點(diǎn)的點(diǎn)Q(
,
),使得該點(diǎn)到右焦點(diǎn)F的距離等于
的長。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(diǎn)(
)在函數(shù)
的圖像上,其中
=
.
(1)證明:數(shù)列
}是等比數(shù)列;
(2)設(shè)
,求
及數(shù)列{
}的通項(xiàng)公式;
(3)記
,求數(shù)列{
}的前n項(xiàng)和
,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第
天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關(guān)于第
天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點(diǎn)
處的切線與直線
平行.
⑴ 求
,
滿足的關(guān)系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com