(本小題滿分12分)
如圖1,在三棱錐P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D為側棱PC上一點,它的正(主)視圖和側(左)視圖如圖2所示.
![]()
(1) 證明:A.D⊥平面PBC;
(2) 求三棱錐D-A.BC的體積;
(3) 在∠A.CB的平分線上確定一點Q,使得PQ∥平面A.BD,并求此時PQ的長.
(1)見解析
(2) ![]()
;
(3)![]()
【解析】本題考查由三視圖求面積、體積,直線與平面平行的性質,直線與平面垂直的判定,考查空間想象能力,邏輯思維能力,計算能力,是中檔題
(Ⅰ)證明AD垂直平面PBC內的兩條相交直線PC、BC,即可證明AD⊥平面PBC;
(Ⅱ)求出三棱錐的底面ABC的面積,求出高BC,再求三棱錐D-ABC的體積;
(Ⅲ)取AB的中點O,連接CO并延長至Q,使得CQ=2CO,點Q即為所求,證明PQ平行平面ABD內的直線OD,即可證明PQ∥平面ABD,在直角△PAQ中,求此時PQ的長.
![]()
(2)
![]()
![]()
![]()
…… 8分
(3)取A.B的中點O,連接CO并延長至Q,使得CQ=2CO,連接PQ,OD,點Q即為所求.
因為O為CQ的中點,D為PC的中點,
PQ∥OD,
PQ
平面A.BD, OD
平面A.BD
PQ∥平面A.BD
連接A.Q,BQ,
四邊形A.CBQ的對角線互相平分, 且A.C=BC,A.C
BC,
四邊形A.CBQ為正方形,
CQ即為∠A.CB的平分線
又
A.Q=4,PA.
平面A.BC ![]()
科目:高中數學 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的
、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com