中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
對于函數y=f(x),定義域為D,閱讀下列命題判斷:
①在定義域D內,若f(-1)=f(1),f(-2)=f(2),則y=f(x)是D上的偶函數;
②在定義域D內,若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數;
③在定義域D內,若f′(2)=0,則y=f(x)在x=2處一定有極大值或極小值;
④若?x∈D,都有f(x+1)=f(-x+3),則y=f(x)的圖象關于直線x=2對稱.
以上命題正確的是(只要求寫出命題的序號)
分析:根據函數奇偶性,單調性,對稱軸和極值之間的關系進行判斷.
解答:解:①根據偶函數的定義可知,在定義域D內,若任意的x都有f(-x)=f(x),則y=f(x)是D上的偶函數,∴①錯誤.
②根據增函數的定義可知在定義域D內,任意的x1<x2,應有f(x1)<f(x2),則y=f(x)是D上的遞增函數,∴②錯誤.
③根據極值的定義可知,若函數在x=2取得極值,則函數在x=2的左右兩側單調性必須相反,∴③錯誤.
④若?x∈D,都有f(x+1)=f(-x+3),則f(x+2)=f(2-x),∴y=f(x)的圖象關于直線x=2對稱,正確.
故答案為;④
點評:本題主要考查函數的性質的考查,要求熟練掌握函數奇偶性,單調性,對稱性和函數極值的定義和應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知y=f(x)是定義在R上的奇函數,且y=f(x+
π
2
)
為偶函數,對于函數y=f(x)有下列幾種描述:
①y=f(x)是周期函數②x=π是它的一條對稱軸;③(-π,0)是它圖象的一個對稱中心;
④當x=
π
2
時,它一定取最大值;其中描述正確的是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列五個命題:
①函數y=f(x),x∈R的圖象與直線x=a可能有兩個不同的交點;
②函數y=log2x2與函數y=2log2x是相等函數;
③對于指數函數y=2x與冪函數y=x2,總存在x0,當x>x0 時,有2x>x2成立;
④對于函數y=f(x),x∈[a,b],若有f(a)•f(b)<0,則f(x)在(a,b)內有零點.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,則x1+x2=5.
其中正確的序號是
③⑤
③⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•和平區一模)函數y=f(x)是定義在[a,b]上的增函數,其中a,b∈R,且0<b<-a,已知y=f(x)無零點,設F(x)=f2(x)+f2(-x),則對于函數y=F(x)有如下四種說法:①定義域是[-b,b];②最小值是0;③是偶函數;④在定義域內單調遞增.其中正確的說法是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•上海模擬)對于函數y=f(x)的圖象上任意兩點A(a,f(a)),B(b,f(b)),設點C分
AB
的比為λ(λ>0).若函數為f(x)=x2(x>0),則直線AB必在曲線AB的上方,且由圖象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函數為f(x)=log2010x,請分析該函數的圖象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在區間[-3,3]上的函數y=f(x)滿足f(-x)+f(x)=0,對于函數y=f(x)的圖象上任意兩點(x1,f(x1)),(x2,f(x2))都有(x1-x2)•[f(x1)-f(x2)]<0.若實數a,b滿足f(a2-2a)+f(2b-b2)≤0,則點(a,b)所在區域的面積為(  )
A、8B、4C、2D、1

查看答案和解析>>

同步練習冊答案