中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

給出下列命題:

①線性回歸方程 必過

②函數的零點有2個;

③函數的圖象與軸圍成的圖形面積是;

④函數是偶函數,且在區間內單調遞增;

⑤函數的最小正周期為.其中真命題的序號是           。

 

【答案】

①④

【解析】

試題分析:根據線性回歸方程的性質可知,命題①線性回歸方程 必過,正確;對于命題②:函數的零點有1個,錯誤;對于命題③:函數的圖象與軸圍成的圖形面積是,錯誤;對于命題④:∵,∴該函數為偶函數,且在區間內單調遞增,正確;對于命題⑤:函數的最小正周期為,錯誤.綜上,真命題的序號為①④

考點:本題考查了命題真假的判斷

點評:本題以命題真假為背景,主要考查了三角函數的性質及函數的零點、線性回歸直線方程等知識

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列命題:
①|
a
-
b
|≤|
a
|-|
b
|;②
a
,
b
共線,
b
,
c
平,則
a
c
為平行向量;③
a
,
b
,
c
為相互不平行向量,則(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,則△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,則
a
⊥(
b
-
c
)   
其中錯誤的有
 

查看答案和解析>>

科目:高中數學 來源: 題型:

1、給出下列命題:
①在圓柱的上、下底面的圓周上各取一點,則這兩點的連線是圓柱的母線;
②圓錐的頂點與底面圓周上任意一點的連線是圓錐的母線;
③在圓臺的上、下底面的圓周上各取一點,則這兩點的連線是圓臺的母線;
④圓柱的任意兩條母線所在的直線是互相平行的.
其中正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

11、對于四面體ABCD,給出下列命題:
①相對棱AB與CD所在的直線異面;
②由頂點A作四面體的高,其垂足是△BCD的三條高線的交點;
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作出三組相對棱中點的連線,所得的三條線段相交于一點;
⑤最長棱必有某個端點,由它引出的另兩條棱的長度之和大于最長棱.
其中正確命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①如果向量
a
,
b
,
c
共面,向量
b
c
d
也共面,則向量
a
,
b
c
d
共面;
②已知直線a的方向向量
a
與平面α,若
a
∥平面α,則直線a∥平面α;
③若P、M、A、B共面,則存在唯一實數x、y使
MP
=x
MA
+y
MB
;
④對空間任意點O與不共線的三點A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x+y+z=1),則P、A、B、C四點共面; 在這四個命題中為真命題的序號有
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①“sinα>sinβ”是“α>β”的既不充分又不必要條件;
②若f(x)在某區間M上為增函數,則對于該區間上的任意x,總有f′(x)>0;
③設空間任意一點O和不共線三點A、B、C,若點P滿足向量關系
OP
=x
OA
+y
OB
+z
OC
,則P、A、B、C四點共面;
④若取值為x1,x2,x3…xn的頻率分別為p1,p2,p3…pn,則其平均數為
n
i=1
xipi

其中所有真命題的序號是
①④
①④

查看答案和解析>>

同步練習冊答案