橢圓
:
(
)的左、右焦點分別為
、
,右頂點為
,
為橢圓
上任意一點.已知
的最大值為3,最小值為2.
(1)求橢圓
的方程;
(2)若直線
:
與橢圓
相交于
、
兩點(
、
不是左右頂點),且以
為直徑的圓過點
.求證:直線
過定點,并求出該定點的坐標.
科目:高中數學 來源: 題型:
| y2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| PA |
| AB |
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,在直角坐標系
中,已知橢圓
的離心率e=
,左右兩個焦分別為
.過右焦點
且與
軸垂直的
直線與橢圓
相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 設橢圓
的左頂點為A,下頂點為B,動點P滿足
,
(
)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓
上. ![]()
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,在直角坐標系
中,已知橢圓
的離心率e=
,左右兩個焦分別為
.過右焦點
且與
軸垂直的
直線與橢圓
相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 設橢圓
的左頂點為A,下頂點為B,動點P滿足
,
(
)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓
上. ![]()
![]()
查看答案和解析>>
科目:高中數學 來源:2012-2013學年河南鄭州盛同學校高三4月模擬考試文科數學試卷(解析版) 題型:解答題
設F1、F2分別為橢圓C:
=1(a>b>0)的左、右兩個焦 點。(1)若橢圓C上的點A(1,
)到F1、F2兩點的 距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年貴州省高三第一次月考文科數學 題型:解答題
(本小題滿分12分)已知橢圓
的方程為
,雙曲線
的左、右焦
點分別是
的左、右頂點,而
的左、右頂點分別是
的左、右焦點.
(1)求雙曲線
的方程;
(2)若直線
與雙曲線C2恒有兩個不同的交點A和B,求
的范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com