中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知點(x,y)在橢圓C:(a>b>0)的第一象限上運動.
(Ⅰ)求點的軌跡C1的方程;
(Ⅱ)若把軌跡C1的方程表達式記為y=f(x),且在內y=f(x)有最大值,試求橢圓C的離心率的取值范圍.
【答案】分析:(I)欲求點的軌跡C1的方程,設,只須求出x,y的關系式即可,利用點(x,y)在橢圓C:(a>b>0)的第一象限上運動,點的坐標適合方程,即可得到x,y的關系式;
(II)由軌跡C1方程是(x>0,y>0),得(x>0).利用基本不等式求出f(x)的最大值,及取得最大值的條件得出關于a,c的不等關系,即可求得橢圓C的離心率的取值范圍.
解答:解:(Ⅰ)設點(x,y)是軌跡C1上的動點,∴(2分)
∴xy=y2
∵點(x,y)在橢圓C:(a>b>0)的第一象限上運動,則x>0,y>0.

故所求的軌跡C1方程是(x>0,y>0).(6分)
(Ⅱ)由軌跡C1方程是(x>0,y>0),得(x>0).

所以,當且僅當,即時,f(x)有最大值.(10分)
如果在開區間內y=f(x)有最大值,只有.(12分)
此時,,解得
∴橢圓C的離心率的取值范圍是.(14分)
點評:本小題主要考查橢圓的簡單性質、軌跡方程等基礎知識,考查運算求解能力,考查數形結合思想、化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網
如圖,四邊形OABC為矩形,點A、C的坐標分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標為(a,0),橢圓C分別以OD、OC為長、短半軸,CD是橢圓在矩形內部的橢圓弧.已知直線l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當m=2時,求橢圓C的標準方程;
(Ⅱ)圓M在矩形內部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)如圖展示了一個由區間(0,k)(其中k為一正實數)到實數集R上的映射過程:區間(0,k)中的實數m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數m對應的實數就是n,記作f(m)=n,

現給出下列5個命題①f(
k
2
)=6
;②函數f(m)是奇函數;③函數f(m)在(0,k)上單調遞增;④函數f(m)的圖象關于點(
k
2
,0)
對稱;⑤函數f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是(  )

查看答案和解析>>

科目:高中數學 來源:2013年湖南省懷化市高考數學三模試卷(文科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數學 來源:2013年黑龍江省哈爾濱三中高考數學二模試卷(文科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數學 來源:2013年黑龍江省哈爾濱三中高考數學二模試卷(理科)(解析版) 題型:解答題

已知橢圓過點,離心率,若點M(x,y)在橢圓C上,則點稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

同步練習冊答案