中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設數列{an}的前n項和為Sn,a3=
1
4
.對任意n∈N*,向量
a
=(1,an)
,
b
=(an+1,
1
2
)
滿足
a
b
,求
lim
n→∞
Sn
a
b
,
an+1+
1
2
an=0
,
故數列{an}為等比數列,公比為-
1
2

a3=a1(-
1
2
)2=
1
4

得a1=1,
所以
lim
n→∞
Sn
=
a1
1-q
=
2
3
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數列{an}的通項公式;
(2)設bn=an(2n-1),求數列{bn}的前n項的和.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列an的前n項的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數列bn的前n項的和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區域為Dn,若Dn內的整點(整點即橫坐標和縱坐標均為整數的點)個數為an(n∈N*
(1)寫出an+1與an的關系(只需給出結果,不需要過程),
(2)求數列{an}的通項公式;
(3)設數列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鄭州一模)設數列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習冊答案