中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知M(0,-2),點A在x軸上,點B在y軸的正半軸,點P在直線AB上,且滿足
AP
=
PB
MA
AP
=0.
(1)當A點在x軸上移動時,求動點P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點,又過E、F作軌跡C的切線l1、l2,當l1⊥l2時,求直線l的方程.
(1)設P(x,y),A(xA,0),B(0,yB),yB>0.則
AP
=(x-xA,y),
PB
=(-x,yB-y).
AP
=
PB
,得
x-xA=-x
y=yB-y

即xA=2x,yB=2y.
MA
=(xA,2),
AP
=(x-xA,y),
MA
=(2x,2),
AP
=(-x,y).
MA
AP
=0得x2=y(y≥0).
(2)設E(x1,y1),F(x2,y2),
因為y′=2x,故兩切線的斜率分別為2x1、2x2
由方程組
x2=y
y=k(x+2)

得x2-kx-2k=0,
x1+x2=k,x1x2=-2k.
當l1⊥l2時,4x1x2=-1,所以k=
1
8

所以,直線l的方程是y=
1
8
(x+2).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知M(0,-2),點A在x軸上,點B在y軸的正半軸,點P在直線AB上,且滿足
AP
=
PB
MA
AP
=0.
(1)當A點在x軸上移動時,求動點P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點,又過E、F作軌跡C的切線l1、l2,當l1⊥l2時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知M={x|0≤x≤2},N={y|0≤y≤2},給出的四個圖形,其中能表示集合M到N的函數關系的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓F:x2+(y-1)2=1,動圓P與定圓F在x軸的同側且與x軸相切,與定圓F相外切.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)已知M(0,2),是否存在垂直于y軸的直線m,使得m被以PM為直徑的圓截得的弦長恒為定值?若存在,求出m的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知M(0,-2),點A在x軸上,點B在y軸的正半軸,點P在直線AB上,且滿足數學公式=數學公式數學公式=0.
(1)當A點在x軸上移動時,求動點P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點,又過E、F作軌跡C的切線l1、l2,當l1⊥l2時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源:2010年北京市海淀區高三查漏補缺數學試卷(解析版) 題型:解答題

已知圓F:x2+(y-1)2=1,動圓P與定圓F在x軸的同側且與x軸相切,與定圓F相外切.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)已知M(0,2),是否存在垂直于y軸的直線m,使得m被以PM為直徑的圓截得的弦長恒為定值?若存在,求出m的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案