中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
 如圖所示,空間四邊形ABCD中,E、F、G分別在AB、BC、CD上,且滿足AE∶EB=CF∶FB=2∶1,CG∶GD="   "

3∶1,過E、F、G的平面交AD于H,連接EH.
(1)求AH∶HD;
(2)求證:EH、FG、BD三線共點.
(1)AH∶HD=3∶1(2)證明略
(1) ∵==2,∴EF∥AC.
∴EF∥平面ACD.而EF平面EFGH,
且平面EFGH∩平面ACD=GH,
∴EF∥GH.而EF∥AC,
∴AC∥GH.
==3,即AH∶HD=3∶1.
(2)證明 ∵EF∥GH,且==
∴EF≠GH,∴四邊形EFGH為梯形.
令EH∩FG=P,則P∈EH,而EH平面ABD,
P∈FG,FG平面BCD,平面ABD∩平面BCD=BD,
∴P∈BD.∴EH、FG、BD三線共點.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

用一個平面去截一個幾何體,如果截面是三角形,則這個幾何體可能是___________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在正四面體P-ABC中,DEF分別是ABBCCA的中點,下面四個結論中不成立的是(  )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1
∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,=.
(1)證明:平面A1AD⊥平面BCC1B1
(2)求二面角A—CC1—B的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,四棱錐P—ABCD中,PA⊥平面ABCD,PB與底面所成的角為45°,
底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=AD.
(1)求證:平面PAC⊥平面PCD;
(2)在棱PD上是否存在一點E,使CE∥平面PAB?若存在,請確定E點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

正四面體S-ABCD中,D為SC的中點,則異面直線BD與SA所成角的余弦值是______________。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

以長方體的各頂點為頂點,能構建四棱錐的個數是(  )
A.4B.8C.12D.48

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,正三棱柱ABCA1B1C1的各棱長都相等,DE分別是CC1AB1的中點,點FBC上且滿足BFFC=1∶3 
(1)若MAB中點,求證 BB1∥平面EFM
(2)求證 EFBC
(3)求二面角A1B1DC1的大小  

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

正四棱錐的一個對角面的面積是一個側面面積的倍,則側面與底面所成二面角的大小是___________。

查看答案和解析>>

同步練習冊答案