中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
函數f(x)=2cos2x-
3
sin2x(x∈R)
的最小正周期和最大值分別為( 。
A、2π,3B、2π,1
C、π,3D、π,1
分析:利用二倍角公式和兩角和公式對函數解析式化簡整理,利用三角函數的周期公式求得最小正周期,利用正弦函數的值域求得函數的最大值.
解答:解:f(x)=2cos2x-
3
sin2x
=cos2x-
3
sin2x+1=2sin(
π
6
-2x)+1
∴T=
2
=π,當sin(
π
6
-2x)=1時,函數有最大值:3
故選C
點評:本題主要考查了三角函數的周期性及其求法,二倍角公式和兩角和公式的化簡求值.考查了學生對三角函數基礎知識的掌握.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在下列命題中:①已知兩條不同直線m、n兩上不同平面α,β,m⊥α,n⊥β,m⊥n,則α⊥β;②函數y=sin(2x-
π
6
)圖象的一個對稱中心為點(
π
3
,0);③若函數f(x)在R上滿足f(x+1)=
1
f(x)
,則f(x)是周期為2的函數;④在△ABC中,若
OA
+
OB
=2
CO
,則S△ABC=S△BOC其中正確命題的序號為
 

查看答案和解析>>

同步練習冊答案