中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax3+3x2-6ax-11,g(x)=3x3+6x+12,直線l:y=kx+9,又f′(-1)=0
(1)求函數f(x)=ax3+3x2-6ax-11在區間(-2,3)上的極值;
(2)是否存在k的值,使直線l既是曲線y=f(x)的切線,又是曲線y=g(x)的切線,如果存在,求出k的值;如果不存在,請說明理由.
分析:(1)對函數求導,由f'(-1)=0,可求a,代入可求導數的符號,進而可判斷函數的單調區間,得到極值;
(2)由直線l:y=kx+9過定點(0,9),由導數的幾何意義可求得g(x)切線方程,然后又由f'(x)=12得-6x2+6x+12=12可得x=0或x=1,同理可求f(x)的切線方程,進而可確定公切線.
解答:解:(1)f'(x)=3ax2+6x-6a,由f'(-1)=0,即3a-6-6a=0,得a=-2,
∴f(x)=-2x3+3x2+12x-11.
令f'(x)=-6x2+6x+12=0,解得x=-1或x=2
當x變化時,f'(x),f(x)在區間(-2,3)上的變化情況如下表:

x (-2,-1) -1 (-1,2) 2 (2,3)
f'(x) - 0 + 0 -
f(x) 單調遞減 -18 單調遞增 9 單調遞減
從上表可知,當x=-1時,f(x)在區間(-2,3)上有極小值,極小值為-18,
當x=2時,f(x)在區間(-2,3)上有極大值,極大值為9;
(2)∵直線m恒過點(0,9).
先求直線m是y=g(x) 的切線.設切點為(x0,3x02+6x0+12)
∵g'(x0)=6x0+6.
∴切線方程為y-(3x02 +6x0+12)=(6x0+6)(x-x0)
將點(0,9)代入得x0=±1.
當x0=-1時,切線方程為y=9; 當x0=1時,切線方程為y=12x+9.
由f'(x)=0得-6x2+6x+12=0,即有x=-1,x=2
當x=-1時,y=f(x)的切線y=-18,
當x=2時,y=f(x)的切線方程為y=9,
∴y=9是公切線,
又由f'(x)=12得-6x2+6x+12=12
∴x=0或x=1,
當x=0時y=f(x)的切線為y=12x-11;
當x=1時y=f(x)的切線為y=12x-10,
∴y=12x+9不是公切線.
綜上所述 k=0時y=9是兩曲線的公切線.
點評:本題主要考查了函數的導數的幾何意義:導數在某點的導數值即為改點的切線的斜率,函數的導數在函數的單調性、函數的極值求解中的應用.屬于函數的導數知識的綜合應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案