中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知點是直角坐標平面內的動點,點到直線(是正常數)的距離為,到點的距離為,且1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線的垂線,對應的垂足分別為,求證=
(3)記
(A、B、是(2)中的點),,求的值.

(1)
(2)借助于聯立方程組,和韋達定理來借助于坐標來證明垂直。
(3)

解析試題分析:解 (1) 設動點為,  
依據題意,有,化簡得
因此,動點P所在曲線C的方程是:.          4分
由題意可知,當過點F的直線的斜率為0時,不合題意,
故可設直線
聯立方程組,可化為
則點的坐標滿足
,可得點
于是,
因此.                     9分
(3)依據(2)可算出

. 
所以,即為所求.                                     13分
考點:直線與拋物線的位置關系
點評:主要是考查了直線與拋物線位置關系的研究,以及設而不求的思想運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知拋物線,過軸上一點的直線與拋物線交于點兩點。
證明,存在唯一一點,使得為常數,并確定點的坐標。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線:的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當點為直線上的定點時,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的一個頂點為,焦點在軸上,中心在原點.若右焦點到直線的距離為3.    
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點.當時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設直線是曲線的一條切線,
(Ⅰ)求切點坐標及的值;
(Ⅱ)當時,存在,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的焦點與橢圓的右焦點重合,拋物線的頂點在坐標原點,過點的直線與拋物線交于A,B兩點,
(1)寫出拋物線的標準方程 (2)求⊿ABO的面積最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的兩個焦點為,點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,設點是橢圓上任一點,求的取值范圍.

查看答案和解析>>

同步練習冊答案