中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=(  )
分析:觀察分析已知條件可以發(fā)現f(x)+f(-x)=18,進而可得出答案.
解答:解:由已知f(x)=x3+asinx-b
3x
+9(a,b∈R),
f(-x)=-x3-asinx+b
3x
+9

∴f(x)+f(-x)=18.
∴f(-2013)+f(2013)=18,
∵f(-2013)=7,∴f(2013)=11.
故選A.
點評:充分利用已知得出f(x)+f(-x)=18是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數f(x)的單調遞減區(qū)間為(
13
,1),求函數f(x)的解析式;
(2)若f(x)的導函數為f′(x),對任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線y=f(x)在x=-1處的切線與直線2x-y-1=0平行,求a的值;
(2)當a=-2時,求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+x-2在點P處的切線與直線y=4x-1平行,則切點P的坐標是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+3x2+a(a為常數) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習冊答案