中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數
(1)討論函數的奇偶性;
(2)若函數上為減函數,求的取值范圍.

1)當時,是奇函數;當時,是偶函數;當時,是非奇非偶函數,(2).

解析試題分析:(1)研究函數奇偶性,首先研究定義域,,在定義域前提下,研究相等或相反關系. 若,則,若,(2)利用函數單調性定義研究函數單調性. 因函數上為減函數,故對任意的,都有,即恒成立,恒成立,因為,所以.
(1)   (1分)
為偶函數,則對任意的,都有
對任意的都成立。由于不恒等于0,故有,即 ∴當時,是偶函數。 (4分)
為奇函數,則對任意的,都有
對任意的都成立。由于不恒等于0,故有,即∴當時,是奇函數。 (6分)
∴當時,是奇函數;當時,是偶函數;當時,是非奇非偶函數。 (7分)
(2)因函數上為減函數,故對任意的,都有,   (2分)
恒成立。 (4分)由,知恒成立,即恒成立。
由于當   (6分)
   (7分)
考點:函數奇偶性與單調性

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知為實數,
(1)若,求 上的最大值和最小值;
(2)若上都是遞增的,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式其中為常數。己知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2x,x∈R.當m取何值時方程|f(x)-2|=m有一個解?兩個解?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義函數(為定義域)圖像上的點到坐標原點的距離為函數的的模.若模存在最大值,則稱之為函數的長距;若模存在最小值,則稱之為函數的短距.
(1)分別判斷函數是否存在長距與短距,若存在,請求出;
(2)求證:指數函數的短距小于1;
(3)對于任意是否存在實數,使得函數的短距不小于2且長距不大于4.若存在,請求出的取值范圍;不存在,則說明理由?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數中,為奇數,均為整數,且均為奇數.求證:無整數根。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是二次函數,不等式的解集是(0,5),且在區間[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在正整數m,使得方程在區間內有且只有兩個不等的實數根?若存在,求出所有m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

據環保部門測定,某處的污染指數與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數為.現已知相距18的A,B兩家化工廠(污染源)的污染強度分別為,它們連線上任意一點C處的污染指數等于兩化工廠對該處的污染指數之和.設).
(1)試將表示為的函數; (2)若,且時,取得最小值,試求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:對于函數,若存在非零常數,使函數對于定義域內的任意實數,都有,則稱函數是廣義周期函數,其中稱為函數的廣義周期,稱為周距.
(1)證明函數是以2為廣義周期的廣義周期函數,并求出它的相應周距的值;
(2)試求一個函數,使為常數,)為廣義周期函數,并求出它的一個廣義周期和周距
(3)設函數是周期的周期函數,當函數上的值域為時,求上的最大值和最小值.

查看答案和解析>>

同步練習冊答案