中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(1)求數列的通項公式;
(2)求數列的前n項和
(3)令,求數列的前n項和
解:(1)因為,所以
所以
(2)
(3)因為
所以
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等差數列的定義為:在一個數列中,從第二項起,如果每一項與它的前一項的差都為同一個常數,那么這個數列叫做等差數列,這個常數叫做該數列的公差.
(1)類比等差數列的定義給出“等和數列”的定義;
(2)已知數列{an}是等和數列,且a1=2,公和為5,求 a18的值,并猜出這個數列的通項公式(不要求證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,Sn是數列{an}的前n項和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數列{an}的通項公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數學 來源:2010年揚州中學高二下學期期末考試數學 題型:解答題

(14分) 已知等差數列的定義為:在一個數列中,從第二項起,如果每一項與它的前一項的差都為同一個常數,那么這個數列叫做等差數列,這個常數叫做該數列的公差.(1)類比等差數列的定義給出“等和數列”的定義;(2) 已知數列是等和數列,且,公和為,求 的值,并猜出這個數列的通項公式(不要求證明)。

查看答案和解析>>

科目:高中數學 來源:2013屆黑龍江虎林高中高二下學期期中理科數學試卷(解析版) 題型:解答題

數列,滿足

(1)求,并猜想通項公式

(2)用數學歸納法證明(1)中的猜想。

【解析】本試題主要考查了數列的通項公式求解,并用數學歸納法加以證明。第一問利用遞推關系式得到,并猜想通項公式

第二問中,用數學歸納法證明(1)中的猜想。

①對n=1,等式成立。

②假設n=k時,成立,

那么當n=k+1時,

,所以當n=k+1時結論成立可證。

數列,滿足

(1)并猜想通項公。  …4分

(2)用數學歸納法證明(1)中的猜想。①對n=1,等式成立。  …5分

②假設n=k時,成立,

那么當n=k+1時,

,             ……9分

所以

所以當n=k+1時結論成立                     ……11分

由①②知,猜想對一切自然數n均成立

 

查看答案和解析>>

科目:高中數學 來源:2009-2010學年江蘇省揚州中學高二(下)期末數學試卷(解析版) 題型:填空題

已知等差數列的定義為:在一個數列中,從第二項起,如果每一項與它的前一項的差都為同一個常數,那么這個數列叫做等差數列,這個常數叫做該數列的公差.
(1)類比等差數列的定義給出“等和數列”的定義;
(2)已知數列{an}是等和數列,且a1=2,公和為5,求 a18的值,并猜出這個數列的通項公式(不要求證明).

查看答案和解析>>

同步練習冊答案