中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知O為△ABC所在平面內一點,滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2
,則點O是△ABC的(  )
A、外心B、內心C、垂心D、重心
分析:根據向量的減法分別用
OA
OB
OC
表示
BC
CA
AB
,利用數量積運算和題意代入式子進行化簡,證出OC⊥AB,同理可得OB⊥AC,OA⊥BC,即證出O是△ABC的垂心.
解答:解:設
OA
=
a
OB
=
b
OC
=
c
,則
BC
=
c
-
b
CA
=
a
-
c
AB
=
b
a

由題可知,|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2

∴|
a
|2+|
c
-
b
|2=|
b
|2+|
a
-
c
|2,化簡可得
c
b
=
a
c
,即(
b
-
a
)•
c
=0,
OC
AB
=0
,∴
AB
OC
,即OC⊥AB.
同理可得OB⊥AC,OA⊥BC.
∴O是△ABC的垂心.
故選C.
點評:本題考查了向量在幾何中應用,主要利用向量的線性運算以及數量積進行化簡證明,特別證明垂直主要根據題意構造向量利用數量積為零進行證明.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知O為△ABC所在平面外一點,且
OA
=
a
OB
=
b
OC
=
c
,OA,OB,OC兩兩互相垂直,H為△ABC的垂心,試用
a
b
c
表示
OH

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O為△ABC所在平面內的一點,且滿足(
OB
-
OC
)•(
OB
+
OC
)•(
OB
+
OC
-2
OA
)=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O為△ABC所在平面內一點,滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2,則點O是△ABC的
 
 心.

查看答案和解析>>

科目:高中數學 來源:2012年蘇教版高中數學必修4 2.5向量的應用練習卷(解析版) 題型:選擇題

已知O為△ABC所在平面內一點,滿足

,則點O是△ABC的(    )

A.外心                   B.內心                  C.垂心              D.重心

 

查看答案和解析>>

同步練習冊答案