中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知sin(
π
2
-a)=
12
13
,則cosa的值為
12
13
12
13
分析:由誘導公式可得sin(
π
2
-α)=cosα,于是可得答案.
解答:解:∵sin(
π
2
-α)=cosα,
又sin(
π
2
-α)=
12
13

∴cosα=
12
13

故答案為:
12
13
點評:本題考查誘導公式的作用,熟練掌握誘導公式是關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知sin(
π
2
-a)+2tan
4
cos(
π
2
+a)=0
,求下面兩式的值:
(1)
cos(a+π)+3sin(3π-a)
3cos(a+
2
)-sin(
2
-a)

(2)sin2(5π-a)-2sin(
π
2
+a)cos(
π
2
-a)-3cos2(π+a)

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,已知sin(
π
2
+A)=
2
5
5

(1)求tan2A的值;   (2)若cosB=
3
10
10
,c=10
,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在△ABC中,已知sin(
π
2
+A)=
2
5
5

(1)求tan2A的值;   (2)若cosB=
3
10
10
,c=10
,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知sin(
π
2
-a)+2tan
4
cos(
π
2
+a)=0
,求下面兩式的值:
(1)
cos(a+π)+3sin(3π-a)
3cos(a+
2
)-sin(
2
-a)

(2)sin2(5π-a)-2sin(
π
2
+a)cos(
π
2
-a)-3cos2(π+a)

查看答案和解析>>

同步練習冊答案