已知
=(2,1),
=(-3,4),則3
+4
= .
科目:高中數(shù)學(xué) 來源:河南省衛(wèi)輝市第一中學(xué)2012屆高三4月考試數(shù)學(xué)理科試題 題型:047
已知|x1-2|<1,|x2-2|<1.
(Ⅰ)求證:2<x1+x2<6,|x1-x2|=2;
(Ⅱ)若f(x)=x2-x+1,求證:|x1-x2|<|f(x1)-f(x2)|<5|x1-x2|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知
:
=1:2,
:
=3:2,連結(jié)AQ,BP,設(shè)它們交于點R,若
=a,
=b.
(1)用a與 b表示
;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一期中考試文科數(shù)學(xué)試卷A卷(解析版) 題型:解答題
已知函數(shù)f(x)(x∈R)滿足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列{an}滿足a1=
,an+1=f(an),bn=
-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數(shù)列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:選擇題
已知
=(2,1), ![]()
=10,
=
,則
=
( )
A.
B.
C.5 D.25
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com