中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知sinα+cosα=
2
,則tanα+
cosα
sinα
的值為(  )
A、-1
B、-2
C、
1
2
D、2
分析:通過sinα+cosα=
2
,求出sinαcosα的值,然后正切化為正弦、余弦化簡tanα+
cosα
sinα
,即可求出值.
解答:解:sinα+cosα=
2
,所以2sinαcosα=1,tanα+
cosα
sinα
=
sinα
cosα
+
cosα
sinα
=
1
sinαcosα
=2
故選D
點評:本題是基礎題,考查三角函數的化簡求值,正切函數化為正弦、余弦函數,同角三角函數的基本關系式的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知sinα+cosα=
7
13
(0<α<π),則tanα=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sinα-cosα=
2
,求sin2α的值( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sinθ+cosθ=
2
2
(0<θ<π),則cos2θ的值為
-
3
2
-
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sinθ+cosθ=
15
,0<θ<π
,求下列各式的值:
(1)sinθ•cosθ
(2)sinθ-cosθ
(3)tanθ

查看答案和解析>>

同步練習冊答案