如圖,△
中,
,
,
,在三角形內(nèi)挖去一個(gè)半圓(圓心
在邊
上,半圓與
、
分別相切于點(diǎn)
、
,與
交于點(diǎn)
),將△
繞直線
旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體.![]()
(1)求該幾何體中間一個(gè)空心球的表面積的大小;
(2)求圖中陰影部分繞直線
旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.
(1)
;(2)
.
解析試題分析:(1)要求球的表面積,首先要求出球的半徑,如圖即半圓
的半徑,這可在
中列方程解得,圓
半徑為
則有
,即
,則此求得
;(3)要陰影部分旋轉(zhuǎn)后的體積,我們要看陰影部分是什么幾何體,看看能不能把變成我們熟知的錐臺(tái)、球,或者上它們構(gòu)成的,本題中,是在三角形內(nèi)部挖去一個(gè)小三角形,因此最后所得可以看作是一個(gè)圓錐里面挖去了一個(gè)球,從而其體積就等于一個(gè)圓錐的體積減去球的體積,即
.
試題解析:(1)連接
,則
,
設(shè)
,則
,
在
中,
,
所以
(4分)
所以
. (6分)
(2)![]()
中,
,
,
,
, (8分)
.(12分)![]()
考點(diǎn):球的表面積;(2)旋轉(zhuǎn)體的體積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=
,點(diǎn)M在線段EC上且不與E、C垂合.
(1)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:BM//平面ADEF;
(2)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為
時(shí),求三棱錐M—BDE的體積![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC=3,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
(1)求證:DC∥平面PAB;
(2)求四棱錐P﹣ABCD的體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013•湖北)如圖,某地質(zhì)隊(duì)自水平地面A,B,C三處垂直向地下鉆探,自A點(diǎn)向下鉆到A1處發(fā)現(xiàn)礦藏,再繼續(xù)下鉆到A2處后下面已無(wú)礦,從而得到在A處正下方的礦層厚度為A1A2=d1.同樣可得在B,C處正下方的礦層厚度分別為B1B2=d2,C1C2=d3,且d1<d2<d3.過(guò)AB,AC的中點(diǎn)M,N且與直線AA2平行的平面截多面體A1B1C1﹣A2B2C2所得的截面DEFG為該多面體的一個(gè)中截面,其面積記為S中.
(1)證明:中截面DEFG是梯形;
(2)在△ABC中,記BC=a,BC邊上的高為h,面積為S.在估測(cè)三角形ABC區(qū)域內(nèi)正下方的礦藏儲(chǔ)量(即多面體A1B1C1﹣A2B2C2的體積V)時(shí),可用近似公式V估=S中﹣h來(lái)估算.已知V=
(d1+d2+d3)S,試判斷V估與V的大小關(guān)系,并加以證明.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,底面
是邊長(zhǎng)為2的菱形,且
,以
與
為底面分別作相同的正三棱錐
與
,且
.![]()
(1)求證:
平面
;
(2)求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐F-ABCD的底面ABCD是菱形,其對(duì)角線
AE、CF都與平面ABCD垂直,AE=1,CF=2.![]()
(1)求二面角B-AF-D的大小;
(2)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知矩形
是圓柱體的軸截面,
分別是下底面圓和上底面圓的圓心,母線長(zhǎng)與底面圓的直徑長(zhǎng)之比為
,且該圓柱體的體積為
,如圖所示.![]()
(1)求圓柱體的側(cè)面積
的值;
(2)若
是半圓弧
的中點(diǎn),點(diǎn)
在半徑
上,且
,異面直線
與
所成的角為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在△ABC中,∠ABC=90°,∠A=30。,斜邊AC上的中線BD=2,現(xiàn)沿BD將△BCD折起成三棱錐C-ABD,已知G是線段BD的中點(diǎn),E,F(xiàn)分別是CG,AG的中點(diǎn).![]()
(1)求證:EF//平面ABC;
(2)三棱錐C—ABD中,若棱AC=
,求三棱錐A一BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2,BC=3.![]()
(1)求證:AB1∥平面BC1D;
(2)求四棱錐B-AA1C1D的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com