給出下面類比推理命題(其中Q為有理數集,R為實數集,C為復數集):
①“若a、b∈R,則a-b=0⇒a=b”類比推出“若a、b∈C,則a-b=0⇒a=b”;
②“若a、b、c、d∈R,則復數a+bi=c+di⇒a=c,b=d”類比推出;“若a、b、c、d∈Q,
則a+b
=c+d
⇒a=c,b=d”;
③“若a、b∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”;
④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”.
其中類比結論正確的命題序號為________(把你認為正確的命題序號都填上).
①②
解析試題分析:根據題意,由于類比推理的概念可知,
對于①“若a、b∈R,則a-b=0⇒a=b”類比推出“若a、b∈C,則a-b=0⇒a=b”;成立。
對于②“若a、b、c、d∈R,則復數a+bi=c+di⇒a=c,b=d”類比推出;“若a、b、c、d∈Q,
則a+b
=c+d
⇒a=c,b=d”;成立。
對于③“若a、b∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”;當a=2+3i,b=1+3i不成立,故錯誤。
對于④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”.比如z=
不成立故答案為①②
考點:命題真假的判定
點評:主要是考查了命題的真假的判定,屬于基礎題。
科目:高中數學 來源: 題型:填空題
科拉茨是德國數學家,他在1937年提出了一個著名的猜想:任給一個正整數n,如果n是偶數,就將它減半(即
);如果n是奇數,則將它乘3加1(即
),不斷重復這樣的運算,經過有限步后,一定可以得到1.如初始正整數為6,按照上述變換規則,我們可以得到一個數列:6,3,10,5,16,8,4,2,1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現在請你研究:
(1)如果
,則按照上述規則施行變換后的第8項為 .
(2)如果對正整數
(首項)按照上述規則施行變換后的第8項為1(注:1可以多次出現),則
的所有不同值的個數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
觀察下列算式:
13 =1,
23 =3+5,
33 = 7+9+11
43 ="13" +15 +17 +19 ,
… …
若某數n3按上述規律展開后,發現等式右邊含有“2013”這個數,則n= .
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
設等差數列{an}的前n項和為Sn,則S4,S8-S4,S12-S8,S16-S12成等差數列,類比以上結論有:設等比數列{bn}的前n項積為Tn,則T4, , ,
成等比數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com