在直接坐標(biāo)系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為
.
(1)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
),判斷點(diǎn)P與直線L的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
(1)點(diǎn)
在直線
上(2)當(dāng)
時(shí),
取得最小值,且最小值為![]()
解析試題分析:(1)把極坐標(biāo)系下的點(diǎn)
化為之間坐標(biāo)系,得![]()
因?yàn)辄c(diǎn)
的直角坐標(biāo)
滿足直線
的方程
,所以點(diǎn)
在直線
上.
(2)因?yàn)辄c(diǎn)
在曲線
上 ,故可設(shè)點(diǎn)
的坐標(biāo)為
,從而點(diǎn)
到直線
的距離為
由此的,當(dāng)
時(shí),
取得最小值,且最小值為![]()
考點(diǎn):極坐標(biāo)系,點(diǎn)到直線的距離
點(diǎn)評(píng):主要是考查極坐標(biāo)方程與參數(shù)方程的運(yùn)用,求解點(diǎn)與直線的位置關(guān)系,以及最值問(wèn)題,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線
的漸近線方程為
,左焦點(diǎn)為F,過(guò)
的直線為
,原點(diǎn)到直線
的距離是![]()
(1)求雙曲線的方程;
(2)已知直線
交雙曲線于不同的兩點(diǎn)C,D,問(wèn)是否存在實(shí)數(shù)
,使得以CD為直徑的圓經(jīng)過(guò)雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
的右焦點(diǎn)
,過(guò)原點(diǎn)和
軸不重合的直線與橢圓
相交于
,
兩點(diǎn),且
,
最小值為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若圓:
的切線
與橢圓
相交于
,
兩點(diǎn),當(dāng)
,
兩點(diǎn)橫坐標(biāo)不相等時(shí),問(wèn):
與
是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P
在橢圓上,線段
與y軸的交點(diǎn)M滿足![]()
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點(diǎn)
,當(dāng)
,且滿足
時(shí),求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:![]()
的離心率為
,過(guò)右焦點(diǎn)
且斜率為
的直線交橢圓
于
兩點(diǎn),
為弦
的中點(diǎn),
為坐標(biāo)原點(diǎn).
(1)求直線
的斜率
;
(2)求證:對(duì)于橢圓
上的任意一點(diǎn)
,都存在
,使得
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面內(nèi)一動(dòng)點(diǎn)
到點(diǎn)
的距離與點(diǎn)
到
軸的距離的差等于1.(I)求動(dòng)點(diǎn)
的軌跡
的方程;(II)過(guò)點(diǎn)
作兩條斜率存在且互相垂直的直線
,設(shè)
與軌跡
相交于點(diǎn)
,
與軌跡
相交于點(diǎn)
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為
,![]()
,點(diǎn)
在橢圓
上,過(guò)點(diǎn)
的直線
與拋物線
交于
兩點(diǎn),拋物線
在點(diǎn)
處的切線分別為
,且
與
交于點(diǎn)
.
(1) 求橢圓
的方程;
(2) 是否存在滿足
的點(diǎn)
? 若存在,指出這樣的點(diǎn)
有幾個(gè)(不必求出點(diǎn)
的坐標(biāo)); 若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)拋物線
的焦點(diǎn)為
,經(jīng)過(guò)點(diǎn)
的動(dòng)直線
交拋物線
于點(diǎn)
,
且
.
(1)求拋物線
的方程;
(2)若
(
為坐標(biāo)原點(diǎn)),且點(diǎn)
在拋物線
上,求直線
傾斜角;
(3)若點(diǎn)
是拋物線
的準(zhǔn)線上的一點(diǎn),直線
的斜率分別為
.求證:
當(dāng)
為定值時(shí),
也為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直角坐標(biāo)平面上,
為原點(diǎn),
為動(dòng)點(diǎn),
,
. 過(guò)點(diǎn)
作
軸于
,過(guò)
作
軸于點(diǎn)
,
. 記點(diǎn)
的軌跡為曲線
,
點(diǎn)
、
,過(guò)點(diǎn)
作直線
交曲線
于兩個(gè)不同的點(diǎn)
、
(點(diǎn)
在
與
之間).
(1)求曲線
的方程;
(2)是否存在直線
,使得
,并說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com