中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在數列{an}中,已知a1=2,an+1=4an-3n+1,n∈N
(1)設bn=an-n,求證:數列{bn}是等比數列;
(2)求數列{an}的前n項和Sn
分析:(1)確定數列{bn}是等比數列,則要證明
bn+1
bn
是個不為0的定值,結合題干條件即可證,
(2)首先根據(1)求出數列{bn}的通項公式,然后根據題干條件求得an=bn+n=4n-1+n,結合等差數列和等比數列的求和公式即可解答.
解答:解:(1)∵
bn+1
bn
=
an+1-(n+1)
an-n
=
4an-3n+1-(n+1)
an-n
=
4(an-n)
an-n
=4
,(5分)
且b1=a1-1=1∴bn為以1為首項,以4為公比的等比數列,(7分)
(2)由(1)得bn=b1qn-1=4n-1(8分)∵an=bn+n=4n-1+n,(9分)
Sn=(40+41+42++4n-1)+(1+2+3++n)

=
1-4n
1-4
+
n(n+1)
2
=
4n-1
3
+
n(n+1)
2
,(12分)
點評:本題主要考查數列求和和等比關系的確定的知識點,解答本題的關鍵是熟練掌握等差和等比數列的性質和求和公式,本題難度一般.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在數列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求證:數列{bn}是等差數列;
(Ⅲ)設cn=
3
bnbn+1
,Sn是數列{cn}的前n項和,求使Sn
m
20
對所有n∈N*都成立的最小正整數m.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想數列{an}的通項公式an的表達式;
(2)用適當的方法證明你的猜想.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的個位數(n∈N*),若數列{an}的前k項和為2011,則正整數k之值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•淮南二模)在數列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)記bn=(an-
1
2
2,n∈N+,求證:數列{bn}是等差數列;
(2)求{an}的通項公式;
(3)對?k∈N+,是否總?m∈N+使得an=k?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)計算a2,a3
(Ⅱ)求證:{
an-
1
2
3n
}是等差數列;
(Ⅲ)求數列{an}的通項公式an及其前n項和Sn

查看答案和解析>>

同步練習冊答案