中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

 已知函數F(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是

(A)   (B)   (C)  (D)

 

 

 

【答案】

 A 【命題意圖】本小題主要考查對數函數的性質、函數的單調性、函數的值域,考生在做本小題時極易忽視a的取值范圍,而利用均值不等式求得a+2b,從而錯選A,這也是命題者的用苦良心之處.

【解析1】因為 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或,所以a+2b=

又0<a<b,所以0<a<1<b,令,由“對勾”函數的性質知函數(0,1)上為減函數,所以f(a)>f(1)=1+=3,即a+2b的取值范圍是(3,+∞).

【解析2】由0<a<b,且f(a)=f(b)得:,利用線性規劃得:,求的取值范圍問題,過點時z最小為3,∴(C)

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數,則實數a的取值范圍是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
|x-1|-a
1-x2
是奇函數.則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x-1x+a
+ln(x+1)
,其中實數a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調性.

查看答案和解析>>

同步練習冊答案