中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

()(本小題滿分12分)

等比數列{}的前n項和為,已知對任意的,點,均在函數均為常數)的圖像上。

(1)求r的值;

(11)當b=2時,記 ,證明:對任意的 ,不等式成立。

(1)

(11)證明見解析。


解析:

因為對任意的,點,均在函數均為常數的圖像上.所以得,當時,,當時,,又因為{}為等比數列,所以,公比為,

(2)當b=2時,,   

,所以

下面用數學歸納法證明不等式成立。

①當時,左邊=,右邊=,因為,所以不等式成立.

②假設當時不等式成立,即成立.則當時,左邊=

所以當時,不等式也成立.

由①、②可得不等式恒成立。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數的值域和最小正周期;
(2)求函數的遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知關于的一元二次函數  (Ⅰ)設集合P={1,2, 3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為,求函數在區間[上是增函數的概率;(Ⅱ)設點()是區域內的隨機點,求函數上是增函數的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分) 一幾何體的三視圖如圖所示,,A1A=,AB=,AC=2,A1C1=1,在線段上且=.

(I)證明:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案